Team:Tsinghua/home

From 2011.igem.org

Revision as of 22:20, 1 July 2011 by Gumilton (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Main Page
Until Jamboree

days

hours

minutes

seconds

Follow us on


Visitor Locations

Locations of visitors to this page

Join the conversation

Team

We're from Tsinghua University.

Since China opened up to the world in 1978, Tsinghua University has developed at a breathtaking pace into a comprehensive research university. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University has now over 25,900 students, including 13,100 undergraduates and 12,800 graduate students. As one of China’s most renowned universities, Tsinghua has become an important institution for fostering talent and scientific research.

With the motto of “Self-Discipline and Social Commitment” and the spirit of “Actions Speak Louder than Words”, Tsinghua University is dedicated to the well-being of Chinese society and to world development.

More...

Project

E Col Transporter Overview This project is destined to generate several E. Coli strains which will cooperate with each other to move forth and back and transport any desired protein along a gradient. Module composition: binding, releasing, transition, movement Binding SH3 domain has high affinity for proline-rich peptides. The small size and high affinity are ideal for our carrier design. In our experiment, we used a short peptide with a Kd of 3.67μM (Y. Jacquot, et al., 2007) as the binding motif and planned to transport protein substrates with this peptide sequence. This part comprises expression of three proteins, namely, OmpA-SH3 protein, which functions as the binding vehicle, OmpA-mCherry protein, which functions as the positive control, Proline-rich containing mCherry protein, which functions as the binding substrate. Releasing It’s difficult to release the substrate from strong binding, and hence protease is called into play. HIV-protease is readily available and its high efficiency, low molecular weight and high specificity constitutes fine candidate. We only need to add the substrate sequence between OmpA and SH3 sequence and the protease will cut off the binding cassette. In order to segregate the action, we’ll generate a single bacteria strain expressing the protease. Transition We need to shift between two states, the binding state and the releasing state. This molecular device is well-known for its lag in phase change, which is well adapted for our application. The lag during the phase transition is appropriate for movement and transport. Movement Kinase system is well utilized in E. Coli movement control. We’ll again use LVA tagged kinase to drive E. Coli towards the target.
























More...

Parts

We built a host of parts during our project. The idea is that after every small step, we store our sequence as a biobrick part.

This strategy marks our progress and facilitates future use of these sequences.

More...

Experiment

Our experiments are carefully recorded on a daily basis. Through the series of records, we can see our joys and sorrows.

Besides, we made the records for the purpose that our experiments can be repeated one day by someone else, thus contributing to the exploration of the unknown.

More...

Support

Our project is supported by School of Life Sciences, Department of Physics, Academy of Arts and Designs in Tsinghua.

Besides, we cited from a series of references.

More...

Human Practice

We put safety as our first priority and made a detailed safety brochure.

We also devoted efforts to publicize synthetic biology and to cooperate with other teams. The teams in China held a summer meetup to discuss our progress and share our resources. We also held a lecture introducing iGEM and our project in Tsinghua Univeristy. To get further support, we sought the cooperation of iGEM Team at Macquire, Australia.

More...