Team:Wisconsin-Madison/references
From 2011.igem.org
Notebook >>
Calendar,
Protocols,
References
References
Khlenbnikov, A., Datsenko, K., Skaug, T., Wanner, B., Keasling, J. (2001). Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high capacity AraE transporter. Microbiology 147, 3241-3247. Smits, T., Seeger, M., Witholt, B., van Beilen, J.B. (2001). New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid 46, 16-24. van Beilen, J.B., Marin, M., Smits, T., Rothlisberger, M., Franchini, A., Witholt, B., Rojo, F. (2004). Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environmental Microbiology 6, 264-273. Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology 11, 2477-2490. Pfleger, B., Pitera, D., Newman, J., Martin, V., Keasling, J. (2007). Microbial sensors for small molecules: Development of a mevalonate biosensor. Metabolic Engineering 9, 30-38. van Beilen, J.B., Panke, S., Lucchini, S., Franchini, G., Rothlisberger, M., Witholt, B. (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147, 1621-1630. Hara, A., Syutsubo, K., Harayama, S. (2003). Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environmental Microbiology 5, 746-753. Martins Dos Santos, et al. (2003). Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. Biotechnology 106, 215-220. Hara, A., Baik, S., Syutsubo, K., Misawa, N., Smits, T., van Beilen, J.B., Harayama, S. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environmental Microbiology 6, 191-197. Gliese, N., Khodaverdi, V., Schobert, M., Gorisch, H. (2004). AgmR controls transcription of a regulon with several operons essential for ethanol oxidation in Pseudomonas aeruginosa ATCC 17933. Microbiology 150, 1851-1857. Canosa, I., Rojo, F., Yuste, L. (1998). Carbon-Source-Dependent Expression of the PalkB Promoter from the Pseudomonas oleovorans Alkane Degradation Pathway. J. Bacteriol. 180, 5218-5226. Makart, S., Heinemann, M., Panke, S. (2006). Characterization of the AlkS/PalkB-Expression System as an Efficient Tool for the Production of Recombinant Proteins in Escherichia coli Fed-Batch Fermentations. Biotechnology and Bioengineering 96, 326-336. Deschavanne, P. and Filipski, J. (1995). Correlation of GC content with replication timing and repair mechanisms in weakly expressed E.coIi genes. Nucleic Acids Research 23, 1350-1353. Van Der Meer, J. R., et al. (1997). Development and Characterization of a Whole-Cell Bioluminescent Sensor for Bioavailable Middle-Chain Alkanes in Contaminated Groundwater Samples. Applied and Environmental Microbiology 63, 4053-4060. Keasling, J. D., et al. (2007). Directed Evolution of AraC for Improved Compatibility of Arabinose- and Lactose-Inducible Promoters. Applied and Environmental Microbiology 73, 5711-5715. Carlsson, A. S., et al. (2009). Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J. Plant. Phys. 166, 787-796. Smits, T. H. M., Seeger, M. A., Witholt, B., and Van Beilen, J. B. (2001). New Alkane-Responsive Expression Vectors for Escherichia coli and Pseudomonas. Plasmid 46, 16-24. Keasling, J. D., et al. Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241-3247. Kok, M., et al. (1988). The Pseudomonas oleovorans Alkane Hydroxylase Gene. J. Bio. Chem. 264, 5435-5441. Diaz-Orejas, R., et al. (1998). Replication and Control of Circular Bacterial Plasmids. Microbiology and Molecular Biology Reviews 62, 434-464. Rairakhwada, D., Seo, J. W., Seo, M., Kwon, O., Rhee, S. K., and Kim, C. H. (2010). Gene cloning, characterization, and heterologous expression of levansucrase from Bacillus amyloliquefaciens. J. Ind. Microbiol. Technol. 37, 195-204. Smits, T. H. M., van Beilen, J. B., Li, Z., Duetz, W. A., and Witholt, B. (2003). Diversity of Alkane Hydroxylase Systems in the Environment. Oil & Gas Science and Technology 58,427-440. Rojo, F. (2009). Degradation of alkanes by bacteria. Environ. Microbiol. 11, 2477-2490. Schobert, M., and Gorisch, H. (2001). A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c550 of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 147, 363-372. Vangai, A. S., Pongsawasdi, P., et al. (2009). Analysis of the promoter activities of the genes encoding three quinoprotein alcohol dehydrogenases in Pseudomonas putida HK5. Microbiology 155, 594-603. Ingram, L. O., and Dombek, K. M. (1984). Effects of Ethanol on the Escherichia coli Plasma Membrane. J. Bacteriol. 157, 233-239. Schirmer, A., Rude, M. A., Li, X., Popova, E., and Cardayre, S. B. (2010). Microbial Biosynthesis of Alkanes. Science 329, 559-562. Steen, E. J., Kang, Y., et al. (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559-562. Barkan Daniel, Stallings Christina L., Glickman Michael S. (2011). An improved counterselectable marker system for mycobacterial recombination using galK and 2-deoxy-galactose. Gene 470, 31-36. Gay P,Lecoq D, Steinmetz M, et al. (1983). Cloning Structural Gene SacB, Which Codes for Exoenzyme Levansucrase of Bacillus-Subtilis – Expression of the Gene in Eschericia coli. J. Bacteriol. 15, 1424-1431.
|