Team:Grenoble/Projet/Modelling/Results
From 2011.igem.org
Modelling - Results
Validation of our genetical network
Validation of the principle
- First deterministic results
- Quorum Sensing modelling
- Stochastic modelling
At early stage, the goal of the modelling team was to confirm the behaviour of the whole circuit. We divided the the network into two main models, Toggle switch and Quorum Sensing (see Our Equations). Very early the modelling results seemed promising and we could rapidly infer that our Toggle Switch design would be effective. Indeed, with the models described in Our Equations we can see the behaviour of our bacteria on the plate. On the plate, one whole region features bacteria in the LacI way and the rest of the plate features bacteria in the TetR way :
On the previous two figures X axis represents physical points on the plate, form left to right of the plate. In each of these points the only difference is the IPTG concentration, as we will apply on our plate an IPTG gradient. The interface between the two regions depends on [aTc]. Lower aTc concentration will move the interface to the left edge of the plate as in Figure 2. We therefore demonstrated that the Toggle switch behaviour was the one we wanted for our application.
With this model, we also demonstrated that degradation tags were necessary to get the appropriate behaviour. If the degradation rate of the LacI and TetR proteins were too long (typical half-time of 10 hours) the concentrations in each protein would be too high and the switching in one way or another would be way too long for our application. As a result we decided to use only lva tagged LacI and TetR genes.
GEOF
One last thing we could predict with the first deterministic models was that even though the toggle switch's purpose is to remain in one way or another, it was however possible to unswitch our system, i.e. basculate in one way even though the other way was already selected. Of course such reaction would require great concentrations of aTc or IPTG in the medium. This prediction was proved to be right later by experiments on our toggle switch.
Our models for Quorum Sensing allowed us to simulate the behaviour of our whole system, confirm our expectations and finally have a visual representation of our entire device. With these deterministic models, we can validate the behaviour of our system.
Even though deterministic modelling predicted a promising behaviour for our system, we modelled our system with Stochastic algorithms in order to check the robustness of our predictions with a highly stochastic medium and to get statistical information on our system. For biosensors the importance of stochastic modelling is clear, it gives a lot of information on the precision of the measure that is mainly caused by the inner randomness of the genetical network. We first worked on histograms, to get the probability density distrbution of our two ways. After each of the stochastic runs the concentration values were stored in histograms.
As we were expecting, the probability distribution is bimodal at the interface. At this point the two ways are equally likely to be chosen in the cell, which is why we have an interface. To compare the results to what we obtained with deterministic modelling, we have to use the mean concentration of each species for each point of the plate. This kind of computation requires a great amount of runs (several tens of millions of runs for a proper analysis).
On this curve we can see that our switch is still very efficient, but for a proper understanding of these results we needed a deeper statistical analysis of the dataset.