Team:TU Munich/model/andgatedata
From 2011.igem.org
Revision as of 13:41, 10 September 2011 by FabianFroehlich (Talk | contribs)
Contents |
1 <a id='magicparlabel-1044' ></a>Functionality
<a id='magicparlabel-1420' ></a>The AND-Gate takes a logical AND of phosphorelated OmpR and logical NOT YcgE. If phosphorelated OmpR is present tRNA is produced which is acetylated in another light-independent reaction. YcgE represses the transcription of T7RNA polymerase mRNA from the T7ptag gene. Since T7ptag gene has two amber mutations, only if both acetylated tRNA and the T7RNAP mRNA are present the mRNA can be translated into the protein. Hence only if YcgE concentration is low and OmpR-P concentration is high at the same time, T7RNA polymerase is produced and enables the expression of <math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow><mi> β </mi> </mrow></math>-Galactosidase which results in the production of a black dye.
2 <a id='magicparlabel-1416' ></a>Equations
<a id='magicparlabel-1045' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mtable> <mtr> <mtd> <mrow><mi>t</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mtd> <mtd> <msub> <mrow> <mover> <mrow><mi>x</mi> </mrow><mo stretchy='true'>˙</mo> </mover> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mtd> <mtd><mo>=</mo> </mtd> <mtd> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow><mi>t</mi> </mrow> </msub> <mfrac> <mrow> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <mrow><mi>O</mi><mi>m</mi><mi>p</mi><mi>R</mi><mo>-</mo><mi>P</mi> </mrow> </mrow> <mrow> <mrow><mi>K</mi><mn>1</mn> </mrow> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mrow><mn>1</mn><mo>+</mo> <mfrac> <mrow> <mrow><mi>O</mi><mi>m</mi><mi>p</mi><mi>R</mi><mo>-</mo><mi>P</mi> </mrow> </mrow> <mrow> <mrow><mi>K</mi><mn>1</mn> </mrow> </mrow> </mfrac> </mrow><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup> </mrow> </mfrac><mo>-</mo> <msub> <mrow> <mrow><mo>(</mo><mi> γ </mi> </mrow> </mrow> <mrow><mn>1</mn> </mrow> </msub><mo>+</mo> <msub> <mrow><mi>k</mi> </mrow> <mrow><mi>a</mi> </mrow> </msub><mo>)</mo> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub><mo>+</mo> <msub> <mrow><mi> γ </mi> </mrow> <mrow> <mrow><mn>2</mn><mi>p</mi> </mrow> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>2</mn> </mrow> </msub><mo>+</mo><mn>2</mn> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>p</mi> </mrow> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>3</mn> </mrow> </msub><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>3</mn> </mrow> </msub> </mrow> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>m</mi> </mrow> </mrow> </msub> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow> <mrow> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>0</mn> </mrow> </msub><mo>+</mo> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow><mi>A</mi><mi>a</mi><mo>-</mo><mi>t</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mtd> <mtd> <msub> <mrow> <mover> <mrow><mi>x</mi> </mrow><mo stretchy='true'>˙</mo> </mover> </mrow> <mrow><mn>2</mn> </mrow> </msub> </mtd> <mtd><mo>=</mo> </mtd> <mtd> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow><mi>a</mi> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub><mo>-</mo><mn>2</mn> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>p</mi> </mrow> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>3</mn> </mrow> </msub><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>3</mn> </mrow> </msub> </mrow> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>m</mi> </mrow> </mrow> </msub> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow> <mrow> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>0</mn> </mrow> </msub><mo>+</mo> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup><mo>-</mo> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>2</mn> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>2</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow><mi>T</mi><mn>7</mn><mi>R</mi><mi>N</mi><mi>A</mi> <msub> <mrow><mi>P</mi> </mrow> <mrow> <mrow><mi>m</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mrow> </msub> </mrow> </mtd> <mtd> <msub> <mrow> <mover> <mrow><mi>x</mi> </mrow><mo stretchy='true'>˙</mo> </mover> </mrow> <mrow><mn>3</mn> </mrow> </msub> </mtd> <mtd><mo>=</mo> </mtd> <mtd> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>m</mi> </mrow> </mrow> </msub><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mrow><mn>1</mn><mo>-</mo> <mfrac> <mrow> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <mrow><mi>Y</mi><mi>c</mi><mi>g</mi><mi>E</mi> </mrow> </mrow> <mrow> <mrow><mi>K</mi><mn>3</mn> </mrow> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mrow><mn>1</mn><mo>+</mo> <mfrac> <mrow> <mrow><mi>Y</mi><mi>c</mi><mi>g</mi><mi>E</mi> </mrow> </mrow> <mrow> <mrow><mi>K</mi><mn>3</mn> </mrow> </mrow> </mfrac> </mrow><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo><mo>-</mo> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>3</mn> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>3</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow><mi>T</mi><mn>7</mn><mi>R</mi><mi>N</mi><mi>A</mi><mi>P</mi> </mrow> </mtd> <mtd> <msub> <mrow> <mover> <mrow><mi>x</mi> </mrow><mo stretchy='true'>˙</mo> </mover> </mrow> <mrow><mn>4</mn> </mrow> </msub> </mtd> <mtd><mo>=</mo> </mtd> <mtd> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>p</mi> </mrow> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>3</mn> </mrow> </msub><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>3</mn> </mrow> </msub> </mrow> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>m</mi> </mrow> </mrow> </msub> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow> <mrow> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>0</mn> </mrow> </msub><mo>+</mo> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup><mo>-</mo> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>4</mn> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>4</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow><mi>l</mi><mi>a</mi><mi>c</mi> <msub> <mrow><mi>Z</mi> </mrow> <mrow> <mrow><mi>m</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mrow> </msub> </mrow> </mtd> <mtd> <msub> <mrow> <mover> <mrow><mi>x</mi> </mrow><mo stretchy='true'>˙</mo> </mover> </mrow> <mrow><mn>5</mn> </mrow> </msub> </mtd> <mtd><mo>=</mo> </mtd> <mtd> <mrow> <msub> <mrow><mi> α </mi> </mrow> <mrow><mi>M</mi> </mrow> </msub><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mrow><mn>1</mn><mo>-</mo> <mfrac> <mrow> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mfrac> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>4</mn> </mrow> </msub> </mrow> <mrow> <mrow><mi>K</mi><mn>5</mn> </mrow> </mrow> </mfrac><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mrow><mo form='prefix' fence='true' stretchy='true' symmetric='true'>(</mo> <mrow><mn>1</mn><mo>+</mo> <mfrac> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>4</mn> </mrow> </msub> </mrow> <mrow> <mrow><mi>K</mi><mn>5</mn> </mrow> </mrow> </mfrac> </mrow><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo> </mrow> <mrow><mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow><mo form='postfix' fence='true' stretchy='true' symmetric='true'>)</mo><mo>-</mo> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mi>M</mi> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>5</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow><mi> β </mi><mo>-</mo><mi>G</mi><mi>a</mi><mi>l</mi><mi>a</mi><mi>c</mi><mi>t</mi><mi>o</mi><mi>s</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>s</mi><mi>e</mi> </mrow> </mtd> <mtd> <msub> <mrow> <mover> <mrow><mi>x</mi> </mrow><mo stretchy='true'>˙</mo> </mover> </mrow> <mrow><mn>6</mn> </mrow> </msub> </mtd> <mtd><mo>=</mo> </mtd> <mtd> <mrow> <msub> <mrow><mi> α </mi> </mrow> <mrow><mi>B</mi> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>5</mn> </mrow> </msub><mo>-</mo> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mi>B</mi> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>6</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow><mi>d</mi><mi>y</mi><mi>e</mi> </mrow> </mtd> <mtd> <msub> <mrow> <mover> <mrow><mi>x</mi> </mrow><mo stretchy='true'>˙</mo> </mover> </mrow> <mrow><mn>7</mn> </mrow> </msub> </mtd> <mtd><mo>=</mo> </mtd> <mtd> <mrow> <msub> <mrow><mi> α </mi> </mrow> <mrow><mi>A</mi> </mrow> </msub> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>6</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow></math>
3 <a id='magicparlabel-1046' ></a>Parameters
<a id='magicparlabel-4165' ></a>
<a id='magicparlabel-17424' ></a><tbody>
<a id='magicparlabel-17329' ></a>Parameter | <a id='magicparlabel-17330' ></a>Value | <a id='magicparlabel-17331' ></a>Unit | <a id='magicparlabel-17332' ></a>Name | <a id='magicparlabel-17333' ></a>Source |
<a id='magicparlabel-17334' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow><mi>t</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17335' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>46.67</mn> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17336' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow> <mrow><mi>n</mi><mi>M</mi> </mrow> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17337' ></a>max transcription rate tRNA | <a id='magicparlabel-17338' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17339' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow><mi>a</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17340' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>0.08</mn> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17341' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17342' ></a>synthesis rate Aa-tRNA | <a id='magicparlabel-17343' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17344' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>p</mi> </mrow> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17345' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1.5625</mn> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17346' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow> <mrow><mi>n</mi><mi>M</mi> </mrow> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17347' ></a>max transcription rate T7RNAP | <a id='magicparlabel-17348' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17349' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow> <mrow><mn>7</mn><mi>m</mi> </mrow> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17350' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow> <mrow><mn>268</mn><mo>*</mo><mn>0.05</mn> </mrow> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17351' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17352' ></a>max translateion rate T7RNAP | <a id='magicparlabel-17353' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17354' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>k</mi> </mrow> <mrow><mi>S</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17355' ></a>0.3 | <a id='magicparlabel-17356' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow> <mrow><mi>n</mi><mi>M</mi> </mrow> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17357' ></a>AND Gate rate | <a id='magicparlabel-17358' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17359' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>0</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17360' ></a>1 | <a id='magicparlabel-17361' ></a>- | <a id='magicparlabel-17362' ></a>threshold Aa-tRNA | <a id='magicparlabel-17363' ></a>guessed |
<a id='magicparlabel-17364' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17365' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow> <mrow><mn>60</mn><mo>*</mo><mn>60</mn> </mrow> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17366' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17367' ></a>degradation of tRNA | <a id='magicparlabel-17368' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17369' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>2</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17370' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow> <mrow><mn>40</mn><mo>*</mo><mn>60</mn> </mrow> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17371' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17372' ></a>degradation of Aa-tRNA | <a id='magicparlabel-17373' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17374' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>3</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17375' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow> <mrow><mn>4.4</mn><mo>*</mo><mn>60</mn> </mrow> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17376' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17377' ></a>degradation of T7RNAP mRNA | <a id='magicparlabel-17378' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17379' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mn>4</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17380' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>46.67</mn> </mrow> <mrow> <mrow><mn>40</mn><mo>*</mo><mn>60</mn> </mrow> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17381' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17382' ></a>degradation of T7RNAP | <a id='magicparlabel-17383' ></a>PKU Beijing 2009 |
<a id='magicparlabel-17384' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>K</mi><mn>1</mn> </mrow> </mrow></math> | <a id='magicparlabel-17385' ></a>5 | <a id='magicparlabel-17386' ></a>nM | <a id='magicparlabel-17387' ></a>response param. OmpR-P,tRNA | <a id='magicparlabel-17388' ></a>guessed |
<a id='magicparlabel-17389' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>K</mi><mn>3</mn> </mrow> </mrow></math> | <a id='magicparlabel-17390' ></a>600 | <a id='magicparlabel-17391' ></a>nM | <a id='magicparlabel-17392' ></a>response param. YcgE,T7RNAP | <a id='magicparlabel-17393' ></a>guessed |
<a id='magicparlabel-17394' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>K</mi><mn>5</mn> </mrow> </mrow></math> | <a id='magicparlabel-17395' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow> <mrow><mi>k</mi><mn>7</mn><mi>p</mi> </mrow> </mrow> <mrow> <mrow><mn>4</mn><mo>*</mo><mi>g</mi><mi>a</mi><mi>m</mi><mi>m</mi><mi>a</mi> </mrow> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17396' ></a>nM | <a id='magicparlabel-17397' ></a>response param T7RNAP,lacZ | <a id='magicparlabel-17398' ></a>guessed |
<a id='magicparlabel-17399' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> α </mi> </mrow> <mrow><mi>M</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17400' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>0.997</mn> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17401' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow> <mrow><mi>n</mi><mi>M</mi> </mrow> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17402' ></a>max transcription rate lacZ | <a id='magicparlabel-17403' ></a>Chaos Lac |
<a id='magicparlabel-17404' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> α </mi> </mrow> <mrow><mi>B</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17405' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow> <mrow><mn>1.661</mn><mi>e</mi><mo>-</mo><mn>5</mn> </mrow> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17406' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17407' ></a>max translation rate lacZ | <a id='magicparlabel-17408' ></a>Chaos Lac |
<a id='magicparlabel-17409' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> α </mi> </mrow> <mrow><mi>A</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17410' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>20</mn> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17411' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17412' ></a>enzymatic reaction rate | <a id='magicparlabel-17413' ></a>Chaos Lac |
<a id='magicparlabel-17414' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mi>M</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17415' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>0.411</mn> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17416' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17417' ></a>degradation lacZ mRNA | <a id='magicparlabel-17418' ></a>Chaos Lac |
<a id='magicparlabel-17419' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi> γ </mi> </mrow> <mrow><mi>B</mi> </mrow> </msub> </mrow></math> | <a id='magicparlabel-17420' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow> <mrow><mn>8.331</mn><mi>e</mi><mo>-</mo><mn>4</mn> </mrow> </mrow> <mrow><mn>60</mn> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17421' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mfrac> <mrow><mn>1</mn> </mrow> <mrow><mi>s</mi> </mrow> </mfrac> </mrow></math> | <a id='magicparlabel-17422' ></a>degradation <math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow><mi> β </mi> </mrow></math>-Galactosidase | <a id='magicparlabel-17423' ></a>Chaos Lac |
4 <a id='magicparlabel-11812' ></a>Initial Data
<a id='magicparlabel-13556' ></a>
<a id='magicparlabel-13557' ></a>
<a id='magicparlabel-16656' ></a><tbody>
<a id='magicparlabel-16624' ></a>Name | <a id='magicparlabel-16625' ></a>Variable | <a id='magicparlabel-16626' ></a>Initial Value | <a id='magicparlabel-16627' ></a>Comment |
<a id='magicparlabel-16628' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>t</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mrow></math> | <a id='magicparlabel-16629' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>1</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-16630' ></a>0 | <a id='magicparlabel-16631' ></a> |
<a id='magicparlabel-16632' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>A</mi><mi>a</mi><mo>-</mo><mi>t</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mrow></math> | <a id='magicparlabel-16633' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>2</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-16634' ></a>0 | <a id='magicparlabel-16635' ></a> |
<a id='magicparlabel-16636' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>T</mi><mn>7</mn><mi>R</mi><mi>N</mi><mi>A</mi> <msub> <mrow><mi>P</mi> </mrow> <mrow> <mrow><mi>m</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mrow> </msub> </mrow> </mrow></math> | <a id='magicparlabel-16637' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>3</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-16638' ></a>0 | <a id='magicparlabel-16639' ></a> |
<a id='magicparlabel-16640' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>T</mi><mn>7</mn><mi>R</mi><mi>N</mi><mi>A</mi><mi>P</mi> </mrow> </mrow></math> | <a id='magicparlabel-16641' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>4</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-16642' ></a>0 | <a id='magicparlabel-16643' ></a> |
<a id='magicparlabel-16644' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>l</mi><mi>a</mi><mi>c</mi> <msub> <mrow><mi>Z</mi> </mrow> <mrow> <mrow><mi>m</mi><mi>R</mi><mi>N</mi><mi>A</mi> </mrow> </mrow> </msub> </mrow> </mrow></math> | <a id='magicparlabel-16645' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>5</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-16646' ></a>0 | <a id='magicparlabel-16647' ></a> |
<a id='magicparlabel-16648' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi> β </mi><mo>-</mo><mi>G</mi><mi>a</mi><mi>l</mi><mi>a</mi><mi>c</mi><mi>t</mi><mi>o</mi><mi>s</mi><mi>i</mi><mi>d</mi><mi>a</mi><mi>s</mi><mi>e</mi> </mrow> </mrow></math> | <a id='magicparlabel-16649' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>6</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-16650' ></a>0 | <a id='magicparlabel-16651' ></a> |
<a id='magicparlabel-16652' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mi>d</mi><mi>y</mi><mi>e</mi> </mrow> </mrow></math> | <a id='magicparlabel-16653' ></a><math xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msub> <mrow><mi>x</mi> </mrow> <mrow><mn>7</mn> </mrow> </msub> </mrow></math> | <a id='magicparlabel-16654' ></a>0 | <a id='magicparlabel-16655' ></a> |
<a id='magicparlabel-13560' ></a>
5 <a id='magicparlabel-1462' ></a>Reference
<a id='magicparlabel-1480' ></a>The model for our AND-Gate is based on the model of the iGEM team PKU Beijing 2009 for their AND-Gate1. We modified the equations such that the change in tRNA and Aa-tRNA does not include the degradation of the mRNA which caused negativity of some concentrations in our model.
<a id='magicparlabel-8941' ></a>The Expression of lacZ is an adaption of the model given by “Dynamics and bistability in a reduced model of the lac operon”
");