Team:UC Davis/Project
From 2011.igem.org
Revision as of 18:23, 25 September 2011 by Aheuckroth (Talk | contribs)
Start a Family
Got a favorite BioBrick? Check our our process for expanding basic parts into part families.Criteria
View our judging criteria for iGEM 2011 here.
Overview
We set out to develop a rugged, easy-to-use mutagenic PCR protocol for the rapid production of mutant libraries of any BioBrick part using standard primers, and to prototype this protocol by creating mutant libraries of the LacI, TetR and λ cI repressible promoters.
Why Make Mutant Libraries?
When designing novel genetic circuits, synthetic biologists are limited to using parts that are already available or that they can manufacture themselves. The creation of new parts can be incredibly time-consuming, since they must be extracted from existing natural genes and converted to a DNA part standard (like our BioBricks) or modified from existing parts.The parts registry contains many useful parts, but in cases where fine control over the function of a part is required for a genetic circuit to function properly, the existing selection may not offer enough variation in activity, chemical response, or other characteristics.
Generating Mutant Libraries with Error-Prone PCR
The process by which we produce our mutant libraries is both fast and simple. We select a BioBrick part and prepare an error-prone PCR reaction using a small amount of template, standard VF2 and VR primers, the error-prone PCR mix listed on our protocols page and Taq polymerase enzyme. The products of this reaction may be diluted and run through another round of PCR to introduce more mutations.Mutant parts are then ligated directly into a screening construct like those listed below to help assess part activity. For example, mutant promoters can be placed in front of GFP to estimate their strength by relative fluorescence, whereas repressors can be paired with their corresponding promoter in front of a reporter. Transformation of these ligation products into competent DH5-α cells yields plates with many colonies, many containing mutants of the selected BioBrick part.
Colonies with the desired level of reporter expression are transferred to replica plates, grown up in liquid culture, and assayed in a 96-well plate reader. Consecutive screens are performed to narrow down the number of potential mutants so that they may be run in triplicate in our plate reader, using Octave scripts to select mutants with the desired range of activity.
Once a final group of mutants has been picked, they are carefully characterized for their activity. You can read more about the characterization process for our promoter mutants here.
Promoter and Repressor Mutants
To show that our protocol can also be used to diversify the application of promoters and other regulatory gene sequences, we performed our mutagenic PCR process on parts R0010, R0040 and R0051 (the LacI, TetR and c1 Lambda promoters) using multiple successive rounds of error-prone PCR. We screened these mutants for promoter activity compared to wild type, and characterized their response to changes in repressor concentration. We also characterized the response of wild-type and mutant LacI promoter / wild-type repressor pairs to IPTG at various repressor concentration levels.General Mutant Screening Constructs
The specific order in which the parts are depicted below allows the user to swap in any promoter/repressor or promoter/activator pair using our regulatory characterization plasmid, K611018.We designed this construct for characterizing promoter mutants. When pBAD is induced with arabinose, the repressor of choice is transcribed leading to decreased levels of the reporter, GFP.