2-2. Cloning MntH
MntH sequence shown in green
Restriction sites shown in pink
Primers to clone and add restriction sites EcoRI, XbaI and SpeI.
Fw primer: AGAATTCGCGGCCGCATCTAGAGAATTTTTTTGC
Rv primer: GCTACTAGTAGGAGCACAAT
The cloned products were cut at EcoRI and SpeI and ligated to PSB1C3 vector which was also cut at EcoRI and SpeI.
2-3. Construct PduP1-18 fused to SmtA and fMT
We originally had PduP1-18 fused with GFP, so we carried out inverse PCR to amplify the part without GFP. We then cut the product at EcoRI and SpeI to add them to the vector containing metallothionein which were cut at EcoRI and XbaI.
2-4. Characterize the effect of expressing SmtA and GlpF in E.coli cultured in Cd(II) containing medium.
LB medium with different cadmium concentrations (0, 100, 120, 150, 180, 210, 240, 270, 300, 400 µM) was prepared in a microtiter plate as shown in the diagram below, and observed the change in OD595 and compared the differences between WT E.coli, E.coli expressing PduP1~18-SmtA, and E.coli expressing PduP1~18-fMT.
We will prepare a LB medium with different cadmium concentrations in a microtiter plate as shown in the diagram below, and see the change in OD660 and compare the differences between WT E.coli, E.coli expressing metallothionein, and E.coli expressing transporter.
3. Result
As Cd(II) concentration goes up, growth of E. coli starts to slow down. At 270 mM , 300 mM and 400 mM Cd(II) concentration, there is no difference in the OD595 between E. coli. However, at 240 mM Cd(II) medium, E. coli expressing PduP1~18-fMT showed a rise in its OD595 at around 6 hours. The difference becomes more significant as the Cd(II) concentration decreases, until it reaches a concentration of 120 mM where the growth between metallothionein expressing E. coli and the wild type becomes very similar. Unfortunately we could not see SmtA to function as a metallothionein, as it showed a similar growth curve to the wild type E. coli. However, looking at the graphs showing growth curves at Cd(II) concentrations 150 mM, 180 mM and 210 mM, cells expressing fMT shows a significant growth when compared to the growth of wild type. This result suggests that fMT bound to Cd(II) taken up by the cell, and allowed them to resist Cd(II) better than the cells without metallothionein. Our PduP1~18 fused fMT showed to maintain its function inside the E. coli.
4. Summary
TBD- As Cd(II) concentration goes up, growth of E. coli starts to slow down. At 270 mM , 300 mM and 400 mM Cd(II) concentration, there is no difference in the OD595 between E. coli. However, at 240 mM Cd(II) medium, E. coli expressing PduP1~18-fMT showed a rise in its OD595 at around 6 hours. The difference becomes more significant as the Cd(II) concentration decreases, until it reaches a concentration of 120 mM where the growth between metallothionein expressing E. coli and the wild type becomes very similar. Unfortunately we could not see SmtA to function as a metallothionein, as it showed a similar growth curve to the wild type E. coli. However, looking at the graphs showing growth curves at Cd(II) concentrations 150 mM, 180 mM and 210 mM, cells expressing fMT shows a significant growth when compared to the growth of wild type. This result suggests that fMT bound to Cd(II) taken up by the cell, and allowed them to resist Cd(II) better than the cells without metallothionein. Our PduP1~18 fused fMT showed to maintain its function inside the E. coli.
5. Reference
[1] Sode et al. (1998) Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothionein gene. J Mar Biotechnol
[2] Makui et al. (2000) Identification of Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Molecular Microbiology
|