Team:LMU-Munich/Lab Notebook

From 2011.igem.org

Revision as of 22:25, 20 September 2011 by Franziskahaefele (Talk | contribs)


Week 1

This week we finally started the most important part of our project: the lab work. So of course we had first of all to setup the lab for our needs. Providing schottbottels, flasks, test glasses, ...

This week also the first batch of primers arrived so we started the first PCRs.

The PCR for pnikA was done using the Phusion polymerase, the primers pnikA-E,N,X-for and pnikA-S-rev. The annealing temperature was set for 50°C. The template came from the gDNA of the Escherichia coli strain MG1655. (For more information about the pnikA-system click here). The expected length of the fragment was 280 bp.

The PCR for prcnA was done using the Phusion polymerase, the primers prcnA-E,N,X-for and prcnA-S-rev. Conditions for the a nnealing temperatur were at 50°C. The template was again the gDNA of the E.coli strain MG1655. (For more information about the prcnA-system click here). The expected length of the fragment was 230 bp.

The PCR for for the iron-dependant detector are more complex. There are two systems that need to get combined in the same organism to work. (For more information about the fur-norB-system click here).
For the one system there is a fur-box needed. In cause of inapropriate restriction sites there had to be done two mutagenesis PCRs. Both were done via the Phusion polymerase and with an annealing temperatur of 50°C. The 5'-end PCR was done with the primers Fur_Emut_fwd and Fur_RNS_rev (length of the fragment: 350 bp), the 3'-end PCR with the primers Fur_XR_fwd and Fur_Emut_rev (length of the fragment: 170 bp). The template was from Neisseria meningitidis.

Restriction digest (X/P), into the BioBrick [http://partsregistry.org/Part:BBa_J04500 BBa_J04500], because this BioBrick is containing the constitutive promoter lacI and a RBS. The backbone was pSB1AK3. The gained BioBrick is [http://partsregistry.org/wiki/index.php?title=Part:BBa_K549004 BBa_K549004].

The fragment was digested via E/S and fused into several BioBricks containing GFP, lacZ' and luxAB. (PnorB)

The PCRs of pnikA and prcnA were digested with the enzymes EcoRI and SpeI. Together with a reporter they were brought into the backbone pSB1C3 via the Gibson Assembly. The reporters were GFP ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K549001 BBa_K549001]), lacZ' ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K549002 BBa_K549002]] and luxAB ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K549003 BBa_K549003]). The reporters were taken from various BioBricks: GFP from BBa_E0040 ([http://partsregistry.org/Part:BBa_E0040 BBa_E0040]), lacZ' from Ba_J33202 ([http://partsregistry.org/Part:BBa_J33202 BBa_J33202]) and luxAB from the BioBrick BBa_K216008 BBa_K216008]).


Of course we also had to proliferate our needed BioBricks that we transformend into super-competent cells. From the overnight cultures we did plasmid preps.

Week 2

fur: Finally we were then abled to do a fusion PCR on the gained fragment with the primers fur_fwd and fur_rev.
Again we used an annealing temperature of 50°C and the Phusion polymerase. The expected length of this PCR was 520 bp.


The other part of the system is the promoter norB. The PCR was done with the Phusion polymerase and the primers PnorB_fwd and PnorB_rev. template was the gDNA of Neisseria meningitidis. The annealing temperature was 50°C for the 400 bp fragment. Unfortunately the PCR gave not the wanted fragment.

Still doing PCRs and start restriction digests.

Week 3

For PnorB we tried a gradient PCR from 40-65°C. The annealing temperatur that was best fitting was 42°C. The PCR was done using the Phusion polymerase. Temolate was the gDNA of N. meningitidis, primers PnorB_fwd and PnorB_rev.

First Biobrick is ready!

Week 4

Redoing the PCR for PrcnA under the same conditions as in the first week.

Week 5

WORKSHOP

Videodreh [http://www.youtube.com/watch?v=vVY3pU11ViI check this out]

The second batch of primers arrived in the beginning of the week, so we could finally start with the protein-based metal detectors.

This insert of [http://partsregistry.org/wiki/index.php?title=Part:BBa_K549004 BBa_K549004] was then digested again via EcoRI and PstI and ligated with the backbone pSB3C5 [http://partsregistry.org/wiki/index.php?title=Part:BBa_K549005 BBa_K549005], as this one is compatible with the backbone pSB1C3, where the other part of the system should be in. (PnorB)


rcnA (EcoRI and SpeI digest), GFP from BBa_E0040 (XbaI and PstI digest) and pSB1C3 (EcoRI and PstI digest) were ligated.

Ligation of luxCDE into pSB1C3 ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K549011 BBa_K549011]).

Ligation of the insert of BioBrick [BBa_K549012] into the backbones with GFP, lacZ' and luxAB. Before they were digested via EcoRI and XbaI, the backbone via SpeI and PstI.

Ligation of norB into the backbones of GFP, lacZ' and luxAB. Digest with EX and backbone SP.

Week 6

We had to redo the PCR for PnorB as there were some tryings to get the part into pSB1C3. But finally we seemed to have succeded. The fusion of PnorB with lacZ' into the backbone pSB1C3 ([http://partsregistry.org/wiki/index.php?title=Part:BBa_K549007 BBa_K549007]) seemed to be successful due to a colonyPCR.


Redoing PCR for PrcnA under the same conditions as in week 1.


This week we also had our interview with biotechnologie.tv about our project. To watch the interview click [http://www.youtube.com/watch?v=-wXGm_Q6Xz8 here].

Week 7

Week 8

After weeks of hard work the last week of our lab work started. As we already prepared our BioBricks for sending them last week there was only the shipment left. So on Monday we said Good-bye and hope that they were going to have a nice journey to Boston. So until Wednesday, the Wiki-freeze, are only a few tasks left: finishing the testing of our BioBricks BBa_K549001 and BBa_K549002 and of course to prepare the last things for the european jamboree in Amsterdam: Making the presentation, the poster and of course ordering our team-sweaters.

Protocols

All protocols were if not described different were followed according to the protocols on [http://openwetware.org/wiki/Main_Page openwetware].

Primer


pnikA-E,N,X-fwd

GCAGAATTCGCGGCCGCTTCTAGAGTTAAGCCTTGCGATCTGCACC

pnikA-S-rev

CCGCTACTAGTAGACGATAAAAGACGCACAAGCC

prcnA-E,N,X-fwd

GCAGAATTCGCGGCCGCTTCTAGAGacggattgtatgagacatggca

prcnA-S-rev

CCGCTACTAGTAcgcaccaagtaagatggcg

PbrR-M,R-fwd

GCAGAATTCGCGGCCGCTTCTAGAGAAGAAGGAGATATACCATGAATATCCAGATCGGCGAG

PbrR-S,A-rev

AGCCTGCAGCGGCCGCTACTAGTAttaCTAGTCGCTTGGATGGGCG

pbrRT-S,A-rev

agtcactagtattaaccggttaTTACACCTGGGTAGATGGCC

pbRMut-fwd

tcgtgcgggattctccagggactgtcggactgc

pbrMut-rev

tccgacagtccctggagaatcccgcacgattgggc

ppbrA-E,N,X-fwd

AGCCTGCAGCGGCCGCTACTAGTAGGTTGCGCGTCGCAACGGAAGC

ppbrA-S-rev

GCAGAATTCGCGGCCGCTTCTAGAGCATGCGGTGCGCTTGGCAAGC

luxCDfor

GAATTCCGCGGCCGCTTCTAGATGGAAAATGAATCAAAATA

luxCDrev

CTGCAGCGGCCGCTACTAGTATTAAGACAGAGAAATTGCTTGAT

luxBfor

ATGAAATTTGGATTGTATGAAATTTGGATTGT

luxBrev

CTGCAGCGGCCGCTACTAGTATTAGGTATATTCC

luxEfor

GAATTCCGCGGCCGcttctagaATGTGACTGGGGTGAGTGA

luxErev

CTGCAGCGGCCGCTACTAGTACTATCAAACGCTTCGGTTAA

iscSfor

AgtcgccggcAAGAAGGAGATATACCATGTACGGAGTTTATAGAGC

icsSrev

agtcactagtattaaccggtctattaatgatgagcccattcg

pabAfor

AgtcgccggcAAGAAGGAGATATACCATGAAATTGCTATTAATTGATAATTATG

pabArev

agtcactagtattaaccggtTTATTACACCACTTTCAAAAAATTATTTAAC

aurFfor

AgtcgccggcAAGAAGGAGATATACCATGCCACGACACCGCGGGC

aurFrev

agtcactagtattaaccggttaTCAACGCGGCGTGTGGGGCG

ChrBAfor

AgtcgccggcAAGAAGGAGATATACCATGAACGCTCTCCCATCCTC

ChrBArev

agtcactagtattaaccggttaTCAGTGATGCAACAACGGATAGG

melAfor

gatcTCTAGAtgGCCGGCGCGTGGCTGGTCGGCAAGCCG

melArev

gatcACCGGTGGCGGACACTATGGCTATTTCTAGC