Team:Wisconsin-Madison/biofuel

From 2011.igem.org

(Difference between revisions)
(Created page with "<html> <style> hr { border: none; border-top: 1px #000000 solid; } #globalWrapper { //background: url('http://2011.igem...")
Line 214: Line 214:
<table border="0" cellspacing="4" cellpadding="0"><tr><td>
<table border="0" cellspacing="4" cellpadding="0"><tr><td>
-
<img src="http://www.toreuse.com/wp-content/uploads/2010/12/tecan-2.jpg"/ align="right" width="350">
+
<img src="https://static.igem.org/mediawiki/2011/7/78/Alks_picture.jpg" align="right" width="350">
<strong><font size="3">
<strong><font size="3">
-
Ethanol Sensor
+
Alkane Sensor
</font></strong><p>
</font></strong><p>
-
The primary source of results thus far has been a plate reader. This is a device which can record the optical density (OD – a measure of cell concentration) as well as the fluorescence of up to 96 cultures at once. Ideally, we hope to produce such a robust fluorescent response as to not need the plate reader for qualitative assessments.
+
 
 +
In the production of large chain alkanes for biofuel production, it is crucial for there to be a rapid and accurate diagnostic for comparing production rates in engineered strains of <i>E. coli.</i> To develop an alkane biosensor, <a href="https://2011.igem.org/Team:Wisconsin-Madison/genes">genes</a> from <i>Pseudomonas putida</i> and <i>Alcanivorax borkumensis</i> were isolated and constructed into a pair of <a href="https://2011.igem.org/Team:Wisconsin-Madison/plasmids">plasmids</a> which code for proteins that bind to alkanes and then induce a promoter upstream of a red fluorescent protein. After gathering data at several different concentrations of alkane, a linear regression was produced, allowing for the quantification of an unknown ethanol concentration in a media based upon the level of fluorescence.
<p><br>
<p><br>
-
This graph shows the fluorescent response of cell cultures containing two plasmids: pBAD33bb: exaDE and PexaA: TagRFP in pSB1A2 (pEtRv2.1). The fluorescence of the system at varying ethanol concentrations was normalized to the optical density of their respective cell culture. The cells’ fluorescence was measured over a range of ethanol concentrations from 0%-5% EtOH. This ethanol sensing system is “turned on” or induced in the presence of arabinose by the PBAD promoter.  The blue data points on the graph represent the fluorescence of cell cultures without any arabinose and therefore the ethanol sensor is uninduced; the red data points represent the fluorescent response of the induced system in the presence of .2% arabinose.
+
Learn more about: <a href="https://2011.igem.org/Team:Wisconsin-Madison/genes">genes</a>
-
<p><br>
+
-
<img src="https://static.igem.org/mediawiki/2011/0/00/Pets_2.1_graph.jpg" align="left" width="500">
+
-
From the graph, it can be seen that there is an increase in fluorescence between the induced and uninduced system. This is the result that was expected, however, there isn’t a large difference in fluorescence between the two systems. To further increase this difference in fluorescence, we intend to decrease the “leakiness” of our promoter through directed evolution.  Additionally, the graph shows a positive correlation between fluorescence and ethanol concentration; therefore, our ethanol sensor exhibits a linear response in fluorescent intensity with varying ethanol concentrations. The magnitude of the slope of the data points represents the degree of our systems response. Currently, the slope of the data is smaller than desired. This will  also be the target of a directed evolution upon the ethanol sensor.
+
-
 
+

Revision as of 20:23, 10 August 2011









Project >> Overview, Ethanol Sensor, Alkane Sensor, Microcompartment

Alkane Sensor

In the production of large chain alkanes for biofuel production, it is crucial for there to be a rapid and accurate diagnostic for comparing production rates in engineered strains of E. coli. To develop an alkane biosensor, genes from Pseudomonas putida and Alcanivorax borkumensis were isolated and constructed into a pair of plasmids which code for proteins that bind to alkanes and then induce a promoter upstream of a red fluorescent protein. After gathering data at several different concentrations of alkane, a linear regression was produced, allowing for the quantification of an unknown ethanol concentration in a media based upon the level of fluorescence.


Learn more about: genes