Team:Peking S

From 2011.igem.org

(Difference between revisions)
Line 10: Line 10:
Cell-cell communication based multicellular systems provide an extended vista for synthetic biology. By compartmentalizing the target network into different cells, crosstalk between molecular interactions and metabolic burden of single cells may be reduced and increasingly complex dynamic functions might be more realizable. However, well-characterized orthogonal signaling systems are far from sufficient.
Cell-cell communication based multicellular systems provide an extended vista for synthetic biology. By compartmentalizing the target network into different cells, crosstalk between molecular interactions and metabolic burden of single cells may be reduced and increasingly complex dynamic functions might be more realizable. However, well-characterized orthogonal signaling systems are far from sufficient.
-
Accordingly, our project intends to develop a versatile signaling platform for complicated multicellular dynamics. For this goal, we are going to characterize a set of recently reported quorum sensing molecules to implement cell-cell communication in a variety of forms. Further, we are constructing logic gates and a teamwork based cell density oscillator to test our Biobricks in both Boolean andntinuous networks.
+
Accordingly, our project intends to develop a versatile signaling platform for complicated multicellular dynamics. For this goal, we are going to characterize a set of recently reported quorum sensing molecules to implement cell-cell communication in a variety of forms. Further, we are constructing logic gates and a teamwork based cell density oscillator to test our Biobricks in both Boolean and continuous networks.

Revision as of 03:04, 15 July 2011

Template:Https://2011.igem.org/Team:Peking S/bannerhidden Template:Https://2011.igem.org/Team:Peking S/back2 Template:Https://2011.igem.org/Team:Peking S/title


PROJECT SUMMARY

Cell-cell communication based multicellular systems provide an extended vista for synthetic biology. By compartmentalizing the target network into different cells, crosstalk between molecular interactions and metabolic burden of single cells may be reduced and increasingly complex dynamic functions might be more realizable. However, well-characterized orthogonal signaling systems are far from sufficient.

Accordingly, our project intends to develop a versatile signaling platform for complicated multicellular dynamics. For this goal, we are going to characterize a set of recently reported quorum sensing molecules to implement cell-cell communication in a variety of forms. Further, we are constructing logic gates and a teamwork based cell density oscillator to test our Biobricks in both Boolean and continuous networks.


GO TO SAFETY PAGE