Team:Macquarie Australia/Project
From 2011.igem.org
(→Overall project) |
m (→Overall project) |
||
Line 1: | Line 1: | ||
<!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** --> | <!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** --> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
{|align="justify" | {|align="justify" | ||
|You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing. | |You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing. | ||
- | |[[ | + | |[[File:Macquarie_Australia_logo.png|200px|right|frame]] |
|- | |- | ||
| | | | ||
- | '' | + | ''Our project'' |
+ | |||
+ | The objective in this project is to build and characterise a biological light switch in E.coli. This will involve construction of bacteriophytochrome biobrick parts and heme-oxygenase biobrick parts. In 2010 the Macquarie Team cloned bacteriophytochrome from two sources and showed that one was functionally assembled when incubated with biliverdin. The part created is not directly usable as a biobrick as it contains an internal PstI site and the XbaI biobrick site is missing. The heme-oxygenase clone also contains an internal restriction site which is not compatible with biobrick assembly. | ||
+ | |||
|[[Image:Macquarie_Australia_team.png|right|frame|Your team picture]] | |[[Image:Macquarie_Australia_team.png|right|frame|Your team picture]] | ||
|- | |- | ||
Line 30: | Line 17: | ||
<!--- The Mission, Experiments ---> | <!--- The Mission, Experiments ---> | ||
+ | The aims of the team this year are to complete the light switch construction: | ||
+ | <br> | ||
+ | 1. Remove the restriction sites from the bacteriophytochrome and heme-oxygenase genes which are incompatible with biobrick assembly. | ||
+ | <br> | ||
+ | 2. Assemble a fully functional bacteriophytochrome biobrick which is functionally expressed in ''E.coli''. | ||
+ | <br> | ||
+ | 3. Assemble an operon consisting of the heme-oxygenase and bacteriophytochrome genes. | ||
+ | <br> | ||
+ | 4. Optimise the gene expression from the operon such that the bacteriophytochrome light switch assembles without requiring the addition of biliverdin. | ||
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center" | {| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center" |
Revision as of 04:58, 7 July 2011
You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing. | |
Our project The objective in this project is to build and characterise a biological light switch in E.coli. This will involve construction of bacteriophytochrome biobrick parts and heme-oxygenase biobrick parts. In 2010 the Macquarie Team cloned bacteriophytochrome from two sources and showed that one was functionally assembled when incubated with biliverdin. The part created is not directly usable as a biobrick as it contains an internal PstI site and the XbaI biobrick site is missing. The heme-oxygenase clone also contains an internal restriction site which is not compatible with biobrick assembly. | |
Team Example |
The aims of the team this year are to complete the light switch construction:
1. Remove the restriction sites from the bacteriophytochrome and heme-oxygenase genes which are incompatible with biobrick assembly.
2. Assemble a fully functional bacteriophytochrome biobrick which is functionally expressed in E.coli.
3. Assemble an operon consisting of the heme-oxygenase and bacteriophytochrome genes.
4. Optimise the gene expression from the operon such that the bacteriophytochrome light switch assembles without requiring the addition of biliverdin.
Home | Team | Official Team Profile | Project | Parts Submitted to the Registry | Modeling | Notebook | Safety | Attributions |
---|
== Introducing a functional light switch into E. coli.
==
The objective in this project is to build and characterise a biological light switch in E.coli. This will involve construction of bacteriophytochrome biobrick parts and heme-oxygenase biobrick parts. In 2010 the Macquarie Team cloned bacteriophytochrome from two sources and showed that one was functionally assembled when incubated with biliverdin. The part created is not directly as a biobrick as it contains an internal PstI site and the XbaI biobrick site is missing. The heme-oxygenase clone also contains an internal restriction site which is not compatible with biobrick assembly. The aims of the team this year are to complete the light switch construction: 1. Remove the restriction sites from the bacteriophytochrome and heme-oxygenase genes which are incompatible with biobrick assembly. 2. Assemble a fully functional bacteriophytochrome biobrick which is functionally expressed in E.coli. 3. Assemble an operon consisting of the heme-oxygenase and bacteriophytochrome genes. 4. Optimise the gene expression from the operon such that the bacteriophytochrome light switch assembles without requiring the addition of biliverdin.
Contents |