Team:NYMU-Taipei

From 2011.igem.org

(Difference between revisions)
Line 12: Line 12:
<font size=3><b>Optogenetics</b>, the latest neuroscientific method, has improved specificity for stimulating certain cell types of neurons, reversible bi-directional stimulation, and elevated spatiotemporal precision. However, to achieve neuronal network stimulation, light cables are still needed, leaving long-standing annoying issues regarding immune responses unresolved. </font>
<font size=3><b>Optogenetics</b>, the latest neuroscientific method, has improved specificity for stimulating certain cell types of neurons, reversible bi-directional stimulation, and elevated spatiotemporal precision. However, to achieve neuronal network stimulation, light cables are still needed, leaving long-standing annoying issues regarding immune responses unresolved. </font>
-
<center><html>
+
 
-
<iframe width="450" height="349" src="http://www.youtube.com/embed/uB66Q4JP6P0?hl=zh&fs=1" frameborder="0" allowfullscreen></iframe>
+
-
</html></center>
+
=='''<font size=4><font color=green>Specific Aims</font></font>'''==
=='''<font size=4><font color=green>Specific Aims</font></font>'''==
Line 22: Line 20:
<font size=4><font color=mediumblue>'''(2) Minimization of neuro-immuno response'''</font></font>
<font size=4><font color=mediumblue>'''(2) Minimization of neuro-immuno response'''</font></font>
-
 
+
<center><html>
 +
<iframe width="450" height="349" src="http://www.youtube.com/embed/uB66Q4JP6P0?hl=zh&fs=1" frameborder="0" allowfullscreen></iframe>
 +
</html></center>
=='''<font size=4 color=green>Our Design</font>'''==
=='''<font size=4 color=green>Our Design</font>'''==

Revision as of 00:04, 29 October 2011

Slide Down Box Menu with jQuery and CSS3

Contents

Tailoring Your Avatar

Goal

Create wireless neuro-stimulator, focusing on achieving remote neuro-stimulation to minimize invasion and damage to the neuron.

Why Do We Want to Do That?

Optogenetics, the latest neuroscientific method, has improved specificity for stimulating certain cell types of neurons, reversible bi-directional stimulation, and elevated spatiotemporal precision. However, to achieve neuronal network stimulation, light cables are still needed, leaving long-standing annoying issues regarding immune responses unresolved.


Specific Aims

(1) Wireless stimulation for neurons

(2) Minimization of neuro-immuno response

Our Design

To achieve this goal, we use a species of magnetic bacterium, Magnetospirillum magneticum AMB-1. We have chosen mms13, a transmembrane protein as our target for protein design in this bacterium, as it serves as a linker between reception of wireless magnetic field and optogenetic neuro-stimulation output. Regarding the neuroimmune response, we have utilized three genes to achieve neurosymbiosis within glial cells: MinC, a division inhibitor, INV, a gene for invasion and LLO, a gene for facilitating escapes from phagosomes.

Our design is made up of the following two devices:

(1) Optomagnetic Design

Bridging magnetics and optogenetics.

(2) NeuroSymbiosis

Enabling magnetotactic bacteria to be neurosymbiosis with glia cells.

Summary of Our Achievements

Achievement.png

Our Institute

(1) The official web sites of our school - National Yang Ming University (NYMU):

[http://web.ym.edu.tw/front/bin/home.phtml in Chinese]

[http://nymu-e.web.ym.edu.tw/front/bin/home.phtml in English]

(2) Follow the two links below to see The Beauty of NYMU

[http://issue.ym.edu.tw/cia/new/ Take a panoramic scenery view of our university]

[http://issue.ym.edu.tw/cia/new/tw/ym720.html Take a tour of our university]

Nymutaipei2.jpg


Sponsor 2011igem NYMU-Taipei.png