Team:Tokyo Tech/Projects/making-rain/index.htm
From 2011.igem.org
Line 312: | Line 312: | ||
<!-- left menu list --> | <!-- left menu list --> | ||
- | <div style="min-height: | + | <div style="min-height: 2500px; float: left;"> |
<div id="LeftMenu"> | <div id="LeftMenu"> | ||
<!--list of page menu: DO NOT WRITE LINKS NOT WRITTEN IN THIS PAGE --> | <!--list of page menu: DO NOT WRITE LINKS NOT WRITTEN IN THIS PAGE --> |
Revision as of 07:53, 27 October 2011
Making it Rain
Playing RPS with E. coli during summer was fun, but, even if humans won, celebrations did not last long since we soon returned to complaining about the hot weather. As a prize for humans who win in our RPS game, we designed an E. coli that can make it rain, making the hot summer more fun and refreshing (let alone applications in agriculture).
1. Introduction
To make it rain we focus on the substance isoprene. It has been observed that trees in tropical rainforests contribute to the formation of photo-smog aerosol in the lower atmosphere by releasing isoprene (Paulson and Seinfeld, 1992). The photo-oxidized isoprene acts as a condensation nucleus [2], may cause shower (make it rain) even if it is present in very low concentrations.
It is known that the enzyme isoprene synthase can catalyze the conversion of dimethylallyl diphosphate(DMAPP) to isoprene. DMAPP is normally synthesized by E. coli, so the only thing we need to make our bacteria synthetize isoprene is isoprene synthase. The isoprene synthase coding gene (ispS) has isolated from the tree poplar (Barbara Miller et al, 2001). E. coli introduce this gene released isoprene into the air by diffusion [1]
In this study, we tried to make E. coli synthetize isoprene by the isoprene synthase on the standardized plasmid. Moreover we calculate that E. coli could produce isoprene more effectively and faster than the trees in the tropical rainforests. It means that the amount of isoprene produced by our E. coli is enough to form the secondary organic aerosols and make it rain.
2. Isoprene by E. coli
We constructed negative control RBS-ispS and sample PlacIQ-RBS-ispS, using the PlacIQ promoter (BBa_I14032) and ispS. Gene ispS is extracted from the pMK backbone vector. (see more about our constructions)
We also measured the amount of isoprene from E. coli by Gas Chromotrography-Mass Spectrometry (GC-MS). When using GC-MS, we injected a series of chloroform-diluted liquid isoprene to draw the calibration curve. To confirm if liquid isoprene produced by E. coli would be released as a gas, we diluted liquid isoprene in water and also in LB medium. In both cases, we could confirm evaporated into the air (see more about these experiments).
We detected 4×10-5 mg/L isoprene produced by E. coli BL21 (DE3) introduced isoprene synthase, while negative control (PlacIQ) produced one tenth of our new E. coli. (see more about GC-MS)
3.Aerosol by Isoprene
The reaction of ozone and isoprene has been studied to examine physical and chemical characteristics of the secondary organic aerosol formed. An aerosol is a suspension of fine solid particles or liquid droplets in a gas. By far the most common aerosols in the atmosphere are clouds, which normally consist of suspensions of water droplets or ice particles of greater or lesser density, which can later cause a rain. According to those information, we designed an easy indoor experiment of reaction of isoprene and ozone, and confirmed that isoprene can make aerosol. (see more about aerosol)
4.Conclusion
We confirmed that E. coli introduced ispS produce isoprene and that isoprene make aerosol. So our E. coli will make it rain!
[1] Yaru zhao, et al., Biosynthesis of isoprene inEscherichia coli via methylerythritol phosphate (MEP) pathway, Appl Microbiol Biothechnol(2011) 90:1915-1922
[2] Leonardo Silva Santos, et al., Mimicking the atmospheric OH-radical-mediated photooxidation of isoprene: formation of cloud-condensation nuclei polyols monitored by electrospray ionization mass spectrometry, Rapid Communication in Mass Spectrometry, 2006