Team:Peking S/project/blogic/extension
From 2011.igem.org
(Created page with "__NOTOC__ {{https://2011.igem.org/Team:Peking_S/bannerhidden}} {{https://2011.igem.org/Team:Peking_S/back2}} {{Template:Http://2011.igem.org/Team:Peking_S/box4project}} <font c...") |
(→Extension of the Boolean Logic) |
||
Line 15: | Line 15: | ||
==Extension of the Boolean Logic== | ==Extension of the Boolean Logic== | ||
+ | |||
+ | It can be anticipated that the absence of feedback mechanisms in Boolean or Non-Boolean gene networks could present a major hurdle for signal correction and modulation in synthetic microbial consortia. Feedback is a mechanism looped back to control a system within itself. Specifically, in systems containing an input and output, feeding back part of the output so as to partially oppose the input is negative feedback, which we make use of in our system. Previous Boolean logic synthetic microbial consortia do not possess any feedback, which limits their potential towards more complex behavior. We have designed a genetic sequential logic circuit with a Boolean-logic based feedback loop as illustrated in Figure 1, which has digitalized performances depending on the previous state of the system. | ||
+ | |||
+ | |||
+ | <center>[[File:feedback.png]]</center> |
Revision as of 20:59, 5 October 2011
Template:Https://2011.igem.org/Team:Peking S/bannerhidden Template:Https://2011.igem.org/Team:Peking S/back2
Template:Https://2011.igem.org/Team:Peking S/bannerhidden
Boolean Logic
Boolean Logic Synthetic Microbial Consortia|
Extension of the Boolean Logic
Extension of the Boolean Logic
It can be anticipated that the absence of feedback mechanisms in Boolean or Non-Boolean gene networks could present a major hurdle for signal correction and modulation in synthetic microbial consortia. Feedback is a mechanism looped back to control a system within itself. Specifically, in systems containing an input and output, feeding back part of the output so as to partially oppose the input is negative feedback, which we make use of in our system. Previous Boolean logic synthetic microbial consortia do not possess any feedback, which limits their potential towards more complex behavior. We have designed a genetic sequential logic circuit with a Boolean-logic based feedback loop as illustrated in Figure 1, which has digitalized performances depending on the previous state of the system.