Team:HKUST-Hong Kong/mic.html
From 2011.igem.org
Line 53: | Line 53: | ||
<a name=intro></a><b>I. Introduction</b><br> | <a name=intro></a><b>I. Introduction</b><br> | ||
- | In order to quantitatively demonstrate the effect of indole charity as well as our construct’s ability to negate it, we have decided to perform a series of minimum inhibition concentration (MIC) tests. In these tests, we subjected different strains and mixtures of E.coli to an antibiotic gradient and cultured them overnight (18 hours). The | + | In order to quantitatively demonstrate the effect of indole charity as well as our construct’s ability to negate it, we have decided to perform a series of minimum inhibition concentration (MIC) tests. In these tests, we subjected different strains and mixtures of E.coli to an antibiotic gradient and cultured them overnight (18 hours). The OD<sub>600</sub> readings of each test were recorded, and they will be shown in later sections for comparison. It is important to note that for each test, we did incubations in both 15ml Falcon tubes (2ml culture) and 1.5ml microcentrifuge tubes (1ml culture) to observe whether oxygen supply would affect the population distribution.<a href=#top>[Top]</a><br><br> |
<a name=wild type></a><b>II. Wild Type (RR1) MIC Test</b><br><br> | <a name=wild type></a><b>II. Wild Type (RR1) MIC Test</b><br><br> | ||
Line 60: | Line 60: | ||
<i>Experimental Design and Aim:<br></i> | <i>Experimental Design and Aim:<br></i> | ||
- | RR1 is a derivative of the common Escherichia coli strain K12 and is not known to have any antibiotic resistance other than for streptomycin. Hence it was arbitrarily chosen as the non-resistant ‘wild type’ for our tests. A simple MIC test was conducted for RR1 to serve as a benchmark for comparison with later experiments; and kanamycin, an aminoglycoside, was opted as the antibiotic of choice. This was primarily for two reasons:<br><br> | + | RR1 is a derivative of the common <i>Escherichia coli</i> strain K12 and is not known to have any antibiotic resistance other than for streptomycin. Hence it was arbitrarily chosen as the non-resistant ‘wild type’ for our tests. A simple MIC test was conducted for RR1 to serve as a benchmark for comparison with later experiments; and kanamycin, an aminoglycoside, was opted as the antibiotic of choice. This was primarily for two reasons:<br><br> |
First, the kanamycin resistance gene incorporated into our selection plasmids functions by producing mutated ribosomes that are insensitive to kanamycin. Unlike some other forms of resistance where antibiotic molecules are directly inactivated, this method not only ensures that the antibiotic levels remain relatively constant throughout the experiment, but also prevents the appearance of satellite colonies during plating.<br><br> | First, the kanamycin resistance gene incorporated into our selection plasmids functions by producing mutated ribosomes that are insensitive to kanamycin. Unlike some other forms of resistance where antibiotic molecules are directly inactivated, this method not only ensures that the antibiotic levels remain relatively constant throughout the experiment, but also prevents the appearance of satellite colonies during plating.<br><br> | ||
Line 88: | Line 88: | ||
<i>Experimental Design and Aim:<br></i> | <i>Experimental Design and Aim:<br></i> | ||
- | Indole has been proposed as a key signalling molecule produced by unstressed (high resistant) E. coli as a form of ‘charity’ that grants stressed (low resistance) cells passive immunity against antibiotics. This enables such stressed individuals to continue to survive and proliferate. Indole functions by inducing the expression and activity of multidrug efflux pumps to expel antibiotics and toxins, as well as activating oxidative-stress protective mechanisms to minimize DNA damage.[1] In an attempt to ascertain and quantify this effect, we repeated the kanamycin MIC test, this time supplementing the LB medium with different concentrations of indole (300µM and 1mM). <br><br> | + | Indole has been proposed as a key signalling molecule produced by unstressed (high resistant) <i>E. coli</i> as a form of ‘charity’ that grants stressed (low resistance) cells passive immunity against antibiotics. This enables such stressed individuals to continue to survive and proliferate. Indole functions by inducing the expression and activity of multidrug efflux pumps to expel antibiotics and toxins, as well as activating oxidative-stress protective mechanisms to minimize DNA damage.[1] In an attempt to ascertain and quantify this effect, we repeated the kanamycin MIC test, this time supplementing the LB medium with different concentrations of indole (300µM and 1mM). <br><br> |
</p><p> | </p><p> | ||
<i>Results:<br></i> | <i>Results:<br></i> | ||
- | The effect of indole on the MIC for RR1 varied under different concentrations. At 300µM, which was the documented natural concentration of indole maintained by unstressed E. coli [1], we saw a clear increase in MIC as shown by a shift of the curve to the right of the non-indole MIC curve. The rate of decline of | + | The effect of indole on the MIC for RR1 varied under different concentrations. At 300µM, which was the documented natural concentration of indole maintained by unstressed E. coli [1], we saw a clear increase in MIC as shown by a shift of the curve to the right of the non-indole MIC curve. The rate of decline of OD<sub>600</sub> (an estimation of cell concentration), also indicated that at 300µM, indole is helping RR1 survive better in kanamycin.<br><br> |
Line 131: | Line 131: | ||
<i>Experimental Design and Aim:<br></i> | <i>Experimental Design and Aim:<br></i> | ||
- | As metioned previously, when E. coli cultures are subjected to antibiotic selection pressure, a small number of naturally resistant individuals, at some cost to themselves, provide protection to other more vulnerable cells by producing indole, resulting in an overall enhancement of the survival capacity of the population in stressful environments. To mimic this naturally occurred phenomenon, a kanamycin resistant strain, which represents the mutants, was introduced into the RR-1 at 1:99 ratio. This kanamycin resistant strain was labeled with RFP for easy recognition. The ratio of kanamycin resistant strain, KanR/RFP, to RR-1 was recorded for later comparison with that of later mix culture assays.<br><br> | + | As metioned previously, when <i>E. coli</i> cultures are subjected to antibiotic selection pressure, a small number of naturally resistant individuals, at some cost to themselves, provide protection to other more vulnerable cells by producing indole, resulting in an overall enhancement of the survival capacity of the population in stressful environments. To mimic this naturally occurred phenomenon, a kanamycin resistant strain, which represents the mutants, was introduced into the RR-1 at 1:99 ratio. This kanamycin resistant strain was labeled with RFP for easy recognition. The ratio of kanamycin resistant strain, KanR/RFP, to RR-1 was recorded for later comparison with that of later mix culture assays.<br><br> |
<i>Results:<br></i> | <i>Results:<br></i> | ||
Line 214: | Line 214: | ||
<a name=conclusion></a><b>IV. Conclusion</b></a><br><br> | <a name=conclusion></a><b>IV. Conclusion</b></a><br><br> | ||
- | Our results show preliminary evidence that indole at the right concentration enhances wild type <i> E. coli</i>’s resistance to antibiotics, and that interfering with the indole signalling pathway is indeed a potential method of enhancing the effectiveness of antibiotic selection. <a href=#top> [Top]</a><br><br> | + | Our results show preliminary evidence that indole at the right concentration enhances wild type <i>E. coli</i>’s resistance to antibiotics, and that interfering with the indole signalling pathway is indeed a potential method of enhancing the effectiveness of antibiotic selection. <a href=#top> [Top]</a><br><br> |
<a name=future></a><b>V. Future Plans</b><br><br> | <a name=future></a><b>V. Future Plans</b><br><br> | ||
Line 222: | Line 222: | ||
As we have not managed to engineer the non-antibiotic selection strain in time, we could not create a GFP-labeled T4MO strain that does not require antibiotics for plasmid maintenance. However, in the event that we can, we will attempt to re-perform the three-way mixed culture MIC tests using this strain to evaluate the true effect of T4MO in indole quorum-sensing disruption. | As we have not managed to engineer the non-antibiotic selection strain in time, we could not create a GFP-labeled T4MO strain that does not require antibiotics for plasmid maintenance. However, in the event that we can, we will attempt to re-perform the three-way mixed culture MIC tests using this strain to evaluate the true effect of T4MO in indole quorum-sensing disruption. | ||
<br><br> | <br><br> | ||
- | In this strain, we will include the Bcr gene (coding for a multidrug efflux pump) regulated by pLac to serve as a way to artificially increase the resistance of this mutant strain when exposed to more potent concentrations of kanamycin.<br><br> | + | In this strain, we will include the Bcr gene (coding for a multidrug efflux pump) regulated by pLac to serve as a way to artificially increase the resistance of this mutant strain when exposed to more potent concentrations of kanamycin. |
+ | <br><br> | ||
It is hoped that by introducing this strain into the population, indole charity work will be even more greatly restricted due to higher plasmid copy maintenance, so that the efficiency of selection for resistant individuals increases. In addition to this, we also have preliminary plans to include a suicide system (tentative candidate: Toxin-Antitoxin systems) inside the plasmid as a failsafe in the event that horizontal gene transfer occurs and causes unintended ecological impacts. <a href=#top> [Top]</a><br><br> | It is hoped that by introducing this strain into the population, indole charity work will be even more greatly restricted due to higher plasmid copy maintenance, so that the efficiency of selection for resistant individuals increases. In addition to this, we also have preliminary plans to include a suicide system (tentative candidate: Toxin-Antitoxin systems) inside the plasmid as a failsafe in the event that horizontal gene transfer occurs and causes unintended ecological impacts. <a href=#top> [Top]</a><br><br> | ||
Line 232: | Line 233: | ||
Under normal growth conditions, a large number of drug efflux pumps are thought to be weakly expressed. In particular, literature documents Bcr to confer varying degrees of resistance to several kinds of antibiotics when overexpressed; including bicyclomycin (selection-capable), tetracycline (8-fold MIC increase*), and kanamycin (4-fold MIC increase*).<br><br> | Under normal growth conditions, a large number of drug efflux pumps are thought to be weakly expressed. In particular, literature documents Bcr to confer varying degrees of resistance to several kinds of antibiotics when overexpressed; including bicyclomycin (selection-capable), tetracycline (8-fold MIC increase*), and kanamycin (4-fold MIC increase*).<br><br> | ||
- | In our iGEM project, we planned to construct a BioBrick with a pLac promoter (BBa_R0010) driving the expression of Bcr. The reason behind this is to take advantage of the additive effect of IPTG on pLac activation. We hope that by varying the concentration of IPTG, we can control the level of expression of Bcr and thus manipulate the mutant E. | + | In our iGEM project, we planned to construct a BioBrick with a pLac promoter (BBa_R0010) driving the expression of Bcr. The reason behind this is to take advantage of the additive effect of IPTG on pLac activation. We hope that by varying the concentration of IPTG, we can control the level of expression of Bcr and thus manipulate the mutant <i>E. coli</i>’s MIC to certain antibiotics. However, due to limited time, we did not manage to finish this construct. Yet other iGEM teams may still obtain our coding sequence for Bcr BBa_K524100) and attempt their own tests. |
<a href=#top> [Top]</a><br><br> | <a href=#top> [Top]</a><br><br> | ||
*: compared with wild type<br><br> | *: compared with wild type<br><br> |
Revision as of 13:41, 5 October 2011
I. Introduction Click to enlarge
Phase 2 - Kanamycin MIC test with indole supplement
Results: Click to enlarge
III. Mixed Culture MIC Tests
Click to enlarge
Phase 2 - Wild type (RR1) with kanamycin resistance T4MO (GRP)
Click to enlarge
Here we have also compiled graphs to compare the ratios of RFP/RR1 cultures to that of T4MO/RR1 ones after overnight incubation. It is clear from the data that the selection efficiency for resistant individuals increased markedly, which might indicate that indole charity work is indeed disrupted, favouring the survival of resistant individuals. [Top] Click to enlarge
IV. Conclusion
[1] http://www.nature.com/nature/journal/v467/n7311/abs/nature09354.html |
Culture Tests I. Introduction II. Wild Type (RR1) MIC Test III. Mixed Culture MIC Tests IV. Conclusion V. Future Plans VI. BioBrick construction |
---|---|
|
|
|