Team:HKUST-Hong Kong/overview.html
From 2011.igem.org
(Difference between revisions)
Line 68: | Line 68: | ||
</p> | </p> | ||
<p align=justify style="margin: 20px 20px 20px 20px"> | <p align=justify style="margin: 20px 20px 20px 20px"> | ||
- | Toluene-4-Monooxygenase (T4MO) is a three-component enzyme system that is naturally able to degrade a variety of hydrocarbons. In particular, its ability to oxidize | + | Toluene-4-Monooxygenase (T4MO) is a three-component enzyme system that is naturally able to degrade a variety of hydrocarbons. In particular, its ability to oxidize or reduce small aromatic compounds has caught the attention of scientists looking for biological means of producing certain useful organic chemicals for industrial use, resulting in extensive research on modifying its activity and affinity. </p> |
<p align=justify style="margin: 20px 20px 20px 20px"> | <p align=justify style="margin: 20px 20px 20px 20px"> | ||
- | For our project, a mutated form of T4MO (double mutations at G103L & A107G) was chosen as the candidate for indole degradation. While there were several possible | + | For our project, a mutated form of T4MO (double mutations at G103L & A107G) was chosen as the candidate for indole degradation. While there were several possible candidates, this particular one was known to convert almost 50% of the indole into 7-hydroxyindole (7-HI). This is of great interest to us as 7-HI has been documented to inhibit biofilm formation in Enterohemorrhagic <i>E. coli</i>, and quite possibly for other strains of <i>E. coli</i> as well. Biofilm formation is a major element that reduces the efficiency of antibiotics due to reduced area of action, and hence we were keen to take advantage of this synergistic effect to improve our construct. |
</p> | </p> | ||
Line 79: | Line 79: | ||
<p align=justify style="margin: 20px 20px 20px 20px"> | <p align=justify style="margin: 20px 20px 20px 20px"> | ||
+ | As our novel strain will have one of its essential genes maintained in a plasmid, a lot of uncertainties are present regarding its fitness. It is quite possible that it will be more vulnerable to antibiotics compared with wild type and thus will be selected against when cultured together with wild type <i>E. coli</i>. This would reduce the effectiveness of our construct and is not desirable. Hence we planed an additional component to be maintained in the plasmid, known as Bcr.</p> | ||
+ | <p align=justify style="margin: 20px 20px 20px 20px"> | ||
</p> | </p> | ||
Revision as of 19:12, 4 October 2011