Team:Rutgers
From 2011.igem.org
m |
|||
Line 52: | Line 52: | ||
<tr> | <tr> | ||
<td width="33%" valign="top" span class="stuff"><p>The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges. In particular, the bacteria need to be extremely sensitive in order to respond to a short light pulse from a laser, but they still must be “selective” enough to use in ambient lighting.</p> | <td width="33%" valign="top" span class="stuff"><p>The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges. In particular, the bacteria need to be extremely sensitive in order to respond to a short light pulse from a laser, but they still must be “selective” enough to use in ambient lighting.</p> | ||
- | <p>We have designed a novel genetic switch that we hope will tackle these problems. If our work | + | <p>We have designed a novel genetic switch that we hope will tackle these problems. If our work will serve as a useful model for future projects that require massive signal amplification. In particular, researchers creating biosensors may find our work very helpful.</p> |
<p><a href="https://2011.igem.org/Team:Rutgers/EAS1"><img src="https://static.igem.org/mediawiki/2011/7/70/More.png" width="128" height="44" /></a></p> | <p><a href="https://2011.igem.org/Team:Rutgers/EAS1"><img src="https://static.igem.org/mediawiki/2011/7/70/More.png" width="128" height="44" /></a></p> | ||
Line 58: | Line 58: | ||
- | <td width="33%" valign="top" span class="stuff"><p>The Full Adder project seeks to create bacteria that can mimic a digital full adder. Since many teams have difficulty creating even something small like a XOR gate, this project would seem nearly impossible. However, we have found that the problem can be greatly simplified if we use a certain simple “encoding” on the outputs of the full adder. | + | <td width="33%" valign="top" span class="stuff"><p>The Full Adder project seeks to create bacteria that can mimic a digital full adder. Since many teams have difficulty creating even something small like a XOR gate, this project would seem nearly impossible. However, we have found that the problem can be greatly simplified if we use a certain simple “encoding” on the outputs of the full adder. The full adder incorporates different types of AND gates, including one that incorporates split protein interactions with zipper linker domains. The zipper linker domain is a novel addition to the iGem registry, and by allowing proteins to be split and reassociated promises to bring new possibilities to future iGem projects.</p> |
- | <p>Our insights may prove useful to any genetic engineer or synthetic biologist working on highly complex systems. | + | <p>Our insights may prove useful to any genetic engineer or synthetic biologist working on highly complex systems. The zipper linker domains create possibilities of new AND interactions, making complexity in future biologic circuits simple. The bacterial full adder may very well become the ancestor to more complicated biological calculators in the future.</p> |
<p><a href="https://2011.igem.org/Team:Rutgers/FA1"><img src="https://static.igem.org/mediawiki/2011/7/70/More.png" width="128" height="44" /></a></p></td> | <p><a href="https://2011.igem.org/Team:Rutgers/FA1"><img src="https://static.igem.org/mediawiki/2011/7/70/More.png" width="128" height="44" /></a></p></td> | ||
<td width="33%" valign="top" span class="stuff"><p>A major problem with the current Parts Registry, a library of BioBricks submitted by iGEM teams, is that many parts do not strictly conform to the BioBrick standard which makes certain operations extremely difficult. Rutger's iGEM software team strives to provide a tool to improve the standard parts registry by checking, and if need be modifying, the BioBrick parts.</p> | <td width="33%" valign="top" span class="stuff"><p>A major problem with the current Parts Registry, a library of BioBricks submitted by iGEM teams, is that many parts do not strictly conform to the BioBrick standard which makes certain operations extremely difficult. Rutger's iGEM software team strives to provide a tool to improve the standard parts registry by checking, and if need be modifying, the BioBrick parts.</p> |
Revision as of 05:21, 29 September 2011
RUTGERS iGEM TEAM WIKI |
||||||||||||||
|