Team:UNAM-Genomics Mexico/Project

From 2011.igem.org

(Difference between revisions)
m (order inversion)
Line 5: Line 5:
=Abstract=
=Abstract=
 +
 +
Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium ''Rhizobium etli'', during its symbiotic relationship with the common bean ''Phaseolus vulgaris'', can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where ''Rhizobium etli'' reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in ''Rhizobium etli'' introducing a pathway assembled with elements from ''Clostridium acetobutylicum'', ''Desulfovibrio africanus'' and ''Chlamydomonas reinhardtii'', while maintaining nitrogen fixation. The two goals of our project are to make ''Rhizobium etli'' a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials.
 +
----
----
Line 39: Line 42:
-
 
-
 
-
Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium ''Rhizobium etli'', during its symbiotic relationship with the common bean ''Phaseolus vulgaris'', can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where ''Rhizobium etli'' reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in ''Rhizobium etli'' introducing a pathway assembled with elements from ''Clostridium acetobutylicum'', ''Desulfovibrio africanus'' and ''Chlamydomonas reinhardtii'', while maintaining nitrogen fixation. The two goals of our project are to make ''Rhizobium etli'' a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials.
 
}}
}}

Revision as of 20:22, 28 September 2011

UNAM-Genomics_Mexico



Abstract

Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium Rhizobium etli, during its symbiotic relationship with the common bean Phaseolus vulgaris, can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where Rhizobium etli reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in Rhizobium etli introducing a pathway assembled with elements from Clostridium acetobutylicum, Desulfovibrio africanus and Chlamydomonas reinhardtii, while maintaining nitrogen fixation. The two goals of our project are to make Rhizobium etli a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials.





<img src="Unamgenomicsassembly.jpg">

<img src="Unamgenomicsrsz_operons.jpg">

<img src="Unamgenomicsrsz_pberc5.jpg">

<img src="UnamgenomicsRsz_psb1c3.jpg">

<img src="Unamgenomics6.jpg">

<img src="Unamgenomicsproject1.jpg"