Team:NYC Wetware/BioNumbers
From 2011.igem.org
(Difference between revisions)
Joey7786 (Talk | contribs)
(Created page with "{{:Team:NYC_Wetware/Templates/nav}} {{:Team:NYC_Wetware/Templates/css}} <html> <html lang="en"> <head> <meta charset="utf-8"> <title>NYC-iGEM wetware</title> <meta name "descrip...")
Newer edit →
(Created page with "{{:Team:NYC_Wetware/Templates/nav}} {{:Team:NYC_Wetware/Templates/css}} <html> <html lang="en"> <head> <meta charset="utf-8"> <title>NYC-iGEM wetware</title> <meta name "descrip...")
Newer edit →
Revision as of 06:48, 28 September 2011
There’s a Gene for that
Deinococcus Radioduran (D. rad) is famous for being resistant to 3000 times the radiation dose lethal to humans. Inspired to prove the potential of genetic engineering, the New York City iGEM Team chose to create radiation-resistant biobricks. We planned to find the genes that give D. rad extraordinary radiation resistance, and put them into loserish bacteria like E. coli, and see if we could turn the E. coli into super-hero bacteria.By finding genes that allow life to thrive in extremely harsh environments, we help develop the emerging field of genetic engineering into a classic engineering disciplines like electrical and mechanical engineering. We will demonstrated that we too can tackle the complex problems. Below find a table of extremophile values. Achieve these and demonstrate the power of synthetic biology to yourselves, fellow iGEM teams, fellow engineers and the general public. In addition to the table below, we have submitted these values to the BioNumbers database of Harvard Medical School's Department of Systems Biology and the Weizmann Institute of Science. Good Luck!