Team:Yale/Project/References

From 2011.igem.org

(Difference between revisions)
(Created page with "{{:Team:Yale/Templates/Yale_Header_Else}} <html> <div id="text"> <div id="container"> <ul> <li> Anon (2005) Natural antifreeze protein may help store human organs The M...")
Line 15: Line 15:
<li>
<li>
DeLuca, C.I., Comley, R. & Davies, P.L. Antifreeze proteins bind independently to ice. Biophys J 74, 1502-1508 (1998).
DeLuca, C.I., Comley, R. & Davies, P.L. Antifreeze proteins bind independently to ice. Biophys J 74, 1502-1508 (1998).
 +
</li>
 +
<li>
 +
Ellis, et al. (2000). "An efficient recombination system for chromosome engineering in Escherichia coli." Proceedings of the National Academy of Sciences of the United States of America 97(11): 5978-5983.
 +
</li>
 +
<li>
 +
Isaacs FJ, et al. (2011). Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333(6040):348-53.
</li>
</li>
<li>
<li>
Line 24: Line 30:
<li>
<li>
Kristiansen, E. et al. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochemistry and Molecular Biology 41, 109-117 (2011).
Kristiansen, E. et al. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochemistry and Molecular Biology 41, 109-117 (2011).
 +
</li>
 +
<li>
 +
Mosberg JA, Lajoie MJ, Church GM. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 2010;186:791-799.
</li>
</li>
<li>
<li>

Revision as of 00:37, 28 September 2011

iGEM Yale

  • Anon (2005) Natural antifreeze protein may help store human organs The Medical News Accessed November 2010
  • Bar, M., Bar-Ziv, R., Scherf, T. & Fass, D. Efficient production of a folded and functional, highly disulfide-bonded [beta]-helix antifreeze protein in bacteria. Protein Expression and Purification 48, 243-252 (2006).
  • Bouvet, V.R., Lorello, G.R. & Ben, R.N. Aggregation of Antifreeze Glycoprotein Fraction 8 and Its Effect on Antifreeze Activity. Biomacromolecules 7, 565-571 (2006).
  • DeLuca, C.I., Comley, R. & Davies, P.L. Antifreeze proteins bind independently to ice. Biophys J 74, 1502-1508 (1998).
  • Ellis, et al. (2000). "An efficient recombination system for chromosome engineering in Escherichia coli." Proceedings of the National Academy of Sciences of the United States of America 97(11): 5978-5983.
  • Isaacs FJ, et al. (2011). Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 333(6040):348-53.
  • Garnham, C.P. et al. Compound Ice-Binding Site of an Antifreeze Protein Revealed by Mutagenesis and Fluorescent Tagging. Biochemistry 49, 9063-9071 (2010).
  • Kristiansen, E., Pedersen, S.A. & Zachariassen, K.E. Salt-induced enhancement of antifreeze protein activity: A salting-out effect. Cryobiology 57, 122-129 (2008).
  • Kristiansen, E. et al. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochemistry and Molecular Biology 41, 109-117 (2011).
  • Mosberg JA, Lajoie MJ, Church GM. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 2010;186:791-799.
  • Robson, D (2007) Fish 'antifreeze' inspires ice-proof paint New Scientist Accessed September 2011Physorg (2008) 'Snow flea antifreeze protein' could help improve organ preservation Accessed September 2011
  • Strom CS, Liu XY, Jia ZC: Antifreeze protein-induced morphological modification mechanisms linked to ice binding surface. Journal of Biological Chemistry 2004, 279:32407-32417.
  • Wang HH*, Isaacs FJ*, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460(7257):894-8.
  • Wergin (2000) Effect of an ice-nucleating activity agent on subzero survival of nematode juveniles. Journal of Nematology, 32(2):198-204.