Team:Michigan/Project
From 2011.igem.org
(Difference between revisions)
Line 7: | Line 7: | ||
<div class="tileLong Colorwhite"> | <div class="tileLong Colorwhite"> | ||
- | = | + | <div id="RightBar"> |
+ | </div> | ||
+ | <h3>Cell Patterning</h3> | ||
This year’s project explores developing a cell patterning platform based on oligonucleotide-directed cell binding to substrate surfaces. Our approach entails engineering cells to selectively bind to certain nucleotide sequences (via surface display of DNA binding proteins, such as zinc fingers), allowing for guided assembly of defined cell patterns on surfaces patterned with oligonucleotides. | This year’s project explores developing a cell patterning platform based on oligonucleotide-directed cell binding to substrate surfaces. Our approach entails engineering cells to selectively bind to certain nucleotide sequences (via surface display of DNA binding proteins, such as zinc fingers), allowing for guided assembly of defined cell patterns on surfaces patterned with oligonucleotides. | ||
</div> | </div> | ||
- | = | + | <div class="tileLong ColorWhite"> |
- | + | <h3>Abstract</h3> | |
The ability of zinc finger domains to selectively bind specific double stranded DNA sequences have largely been applied intracellularly, such as in engineered zinc finger nucleases for genomic manipulations. Proteins containing zinc finger domains can also be used extracellularly to precisely adhere objects to surfaces containing bound oligonucleotides. This project aims to utilize the specificity of zinc finger protein to direct binding of ''Escherichia coli'' to oligonucleotides bound on surfaces. The fusion protein engineered to contain a fragment of the OmpA membrane domain and a zinc finger domain allows the protein to be expressed on the outside of the cell while remaining bound to the host cell. Possible applications of this project include creating patterns with fluorescently labeled cells or studying cell-cell interactions. | The ability of zinc finger domains to selectively bind specific double stranded DNA sequences have largely been applied intracellularly, such as in engineered zinc finger nucleases for genomic manipulations. Proteins containing zinc finger domains can also be used extracellularly to precisely adhere objects to surfaces containing bound oligonucleotides. This project aims to utilize the specificity of zinc finger protein to direct binding of ''Escherichia coli'' to oligonucleotides bound on surfaces. The fusion protein engineered to contain a fragment of the OmpA membrane domain and a zinc finger domain allows the protein to be expressed on the outside of the cell while remaining bound to the host cell. Possible applications of this project include creating patterns with fluorescently labeled cells or studying cell-cell interactions. | ||
+ | </div> | ||
==Research Modules== | ==Research Modules== |
Revision as of 02:12, 27 September 2011