Team:UNAM-Genomics Mexico/Modeling

From 2011.igem.org

(Difference between revisions)
Line 1: Line 1:
{{:Team:UNAM-Genomics Mexico/Templates/Modeling| content=  
{{:Team:UNAM-Genomics Mexico/Templates/Modeling| content=  
 +
__NOTOC__
 +
 +
 +
 +
=Modeling=
 +
 +
----
 +
 +
 +
<html>
<html>
-
<!-- Page Body Code. -->
+
<div class="top-slider-main">
-
<div class="right_image">
+
    <div class="slider-box1">
-
<img class="sub_project" alt="Bio-SintetizArte Image" src="https://static.igem.org/mediawiki/2011/a/ae/Aguila.png" title="Biosintetizarte">
+
        <div class="left"><br /><center></center></div>
-
+
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/1/1f/Unamgenomicsproject1.jpg</div>
-
</div>
+
    </div>
-
<p>Inside the <a class="model" href=""><i>Phaseolus vulgaris</i></a> root nodules, <a class="model" href=""><i>Rhizobium etli</i></a>  
+
    <div class="slider-box2">
-
enjoys a protected niche. However the protection provided by the plant is given solely in exchange for the nitrous compounds
+
        <div class="left"><br /><center></center></div>
-
produced by the bacteria. For this it is very important to understand how <a class="model" href="">hydrogen production</a>  
+
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/3/3e/Unamgenomics6.jpg"></div>
-
will affect <a class="model" href="">nitrogen fixation</a> in the bacteria. That is the question we aim to answer with our
+
    </div>
-
modeling efforts.</p>
+
    <div class="slider-box3">
-
</div
+
        <div class="left"><br /><center></center></div>
-
<div class="descriptive_text">
+
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/7/7a/Unamgenomicsteam1.jpg"></div>
-
<h1 class="model_header">Flux Balance Analysis</h1>
+
    </div>
-
<p><i>R. elti</i>'s metabolism inside the nodule is fairly constant. This homeostatic state is one of the assumptions done when
+
    <div class="slider-box4">
-
modeling metabolism with <a class="model" href="">Flux Balance Analysis</a>. We have deffined three main metabolic
+
        <div class="left"><br /><center></center></div>
-
compartments: <a class="model" href="">cytosol</a>, <a class="model" href="">periplasm</a> and
+
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/8/8e/Unamgenomicsteam4.jpg"></div>
-
<a class="model" href="">extracellular compartment</a>.</p>
+
    </div>
-
<h1 class="model_header">Cellular Automaton</h1>
+
    <div class="slider-box5">
-
<p>To asses how individual bacterium interact with each other we'll use <a class="model" href="">cellular automaton</a> based models.</p>
+
        <div class="left"><br /><center></center></div>
-
<h1 class="model_header">Game Theory</h1>
+
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/7/73/Unamgenomics5.jpg"></div>
-
<p>The niche adecuation is our final goal. To model it we'll use the prize and penalization perspective of the
+
    </div>
-
<a class="model" href="">game theory</a> branch of math.</p>
+
    <div class="slider-box6">
-
</div>
+
      <div class="left"><br /><center></center></div>
-
<!--END Page Body Code-->
+
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/6/60/Unamgenomicsteam3.jpg" class="sliderimage"></div>
-
</div><!--id="container"-->
+
    </div>
 +
</div>
 +
 
 +
 
</body>
</body>
</html>
</html>
 +
 +
Inside the Phaseolus vulgaris root nodules, Rhizobium etli enjoys a protected niche. However the protection provided by the plant is given solely in exchange for the nitrous compounds produced by the bacteria. For this it is very important to understand how hydrogen production will affect nitrogen fixation in the bacteria. That is the question we aim to answer with our modeling efforts.
 +
Flux Balance Analysis
 +
 +
R. elti's metabolism inside the nodule is fairly constant. This homeostatic state is one of the assumptions done when modeling metabolism with Flux Balance Analysis. We have deffined three main metabolic compartments: cytosol, periplasm and extracellular compartment.
 +
 +
==Cellular Automaton==
 +
 +
To asses how individual bacterium interact with each other we'll use cellular automaton based models.
 +
==Game Theory==
 +
 +
The niche adecuation is our final goal. To model it we'll use the prize and penalization perspective of the game theory branch of math.
 +
 +
 +
}}
}}

Revision as of 10:25, 26 September 2011

UNAM-Genomics_Mexico



Modeling









Inside the Phaseolus vulgaris root nodules, Rhizobium etli enjoys a protected niche. However the protection provided by the plant is given solely in exchange for the nitrous compounds produced by the bacteria. For this it is very important to understand how hydrogen production will affect nitrogen fixation in the bacteria. That is the question we aim to answer with our modeling efforts. Flux Balance Analysis

R. elti's metabolism inside the nodule is fairly constant. This homeostatic state is one of the assumptions done when modeling metabolism with Flux Balance Analysis. We have deffined three main metabolic compartments: cytosol, periplasm and extracellular compartment.

Cellular Automaton

To asses how individual bacterium interact with each other we'll use cellular automaton based models.

Game Theory

The niche adecuation is our final goal. To model it we'll use the prize and penalization perspective of the game theory branch of math.