Team:Lyon-INSA-ENS/Project/ToGoFurtherFr

From 2011.igem.org

(Difference between revisions)
Line 43: Line 43:
               <li> <a href="#living sciences"> <font color="green"> <b>Histoire des sciences de la vie </b> </font> </a> </li>  
               <li> <a href="#living sciences"> <font color="green"> <b>Histoire des sciences de la vie </b> </font> </a> </li>  
               <br>
               <br>
-
               <li> <a href="#future"> <font color="green"> <b> Qu'en est-il du futur ?</b> </font> </a> </li>
+
               <li> <a href="#future"> <font color="green"> <b>Qu'en est-il du futur ?</b> </font> </a> </li>
               <br/>
               <br/>
               <li> <a href="#radioactivity"> <font color="green"> <b> Qu'est ce que la Radioactivité ? </b> </font> </a> </li>  
               <li> <a href="#radioactivity"> <font color="green"> <b> Qu'est ce que la Radioactivité ? </b> </font> </a> </li>  
Line 70: Line 70:
<span style="line-height:1.5em;">
<span style="line-height:1.5em;">
-
Many scientific discoveries in physics, biology and computer science happened during the 19th and 20th centuries<br> <br>
+
Beaucoup de découvertes scientifiques en physique, en biologie et en informatique ont eu lieu durant le 19éme et le 20éme siècles <br><br>
-
The understanding of the structure of matter and in particular atom allowed the discovery and explanation of radioactivity ( observed by H. Becquerel and the Curies ). This natural or artificial property of some elements has been used in several domains like medicine and production of electric energy. The second half of the 20th century will see its industrialization.
+
La compréhension de la structure de la matière et en particulier de l'atome a permis la découverte et l'explication de la radioactivité (observée par H. Becquerel et les Curie). Cette propriété naturelle ou artificielle de certains éléments a été utilisée dans plusieurs domaines comme la médecine et la production d'énergie électrique. La seconde moitié du 20ème siècle verra son industrialisation.
 +
 
     </span>   
     </span>   
     <br> <br>
     <br> <br>
Line 85: Line 86:
     <p style = "text-align : center";>
     <p style = "text-align : center";>
-
               <a href="#top"> <font color="grey"> <b>Back to the top </b> </font> </a> </li>  
+
               <a href="#top"> <font color="grey"> <b>Retour en haut de page</b> </font> </a> </li>  
               <br/>
               <br/>
     </p>
     </p>
Line 92: Line 93:
       <p id= "living sciences"> <font color="green" size="5">
       <p id= "living sciences"> <font color="green" size="5">
-
               Story of living sciences<br><HR>
+
               Histoire des sciences de la vie<br><HR>
           </font>
           </font>
       </p>
       </p>
Line 98: Line 99:
<span style="line-height:1.5em;">
<span style="line-height:1.5em;">
-
In living sciences, progress was slower. The first significant discoveries date from the 16th century.<br> <br>
+
En sciences du vivant, les progrès se sont fais lentement. La première découverte significative date du 16ème siècle. <br>
-
Then, microbiology rose during the second half of the 19th century with L. Pasteur and other scientists' work.
+
La microbiologie quant à elle a fait son apparition durant la deuxième moitié du 19ème siècle avec L. Pasteur et le travail d'autres scientifiques.
-
During the 20th century, discoveries about DNA ( structure, regulation of gene expression, sequencing) allowed the birth of a new domain : molecular biology.<br>  
+
Pendant le 20ème siècle, les découvertes sur l'ADN (structure, régulation de l'expression génique, séquençage) ont permis la naissance d'un nouveau domaine:. la biologie moléculaire <br>
-
Then, works on restriction enzymes and Polymerase Chain Reaction (PCR) allow the building of new DNA molecules.<br>  
+
Les travaux sur les enzymes de restriction et la Polymerase Chain Reaction (PCR) ont permis par la suite la construction de nouvelles molécules d'ADN. <br>
-
Progress in computer science, increased computing power, new modeling and sequence alignment softwares has now paved the way for synthetic biology. <br> <br>
+
Les progrès dans les sciences informatiques, l'augmentation de la puissance du calcul informatique, la modélisation et les nouveaux logiciels d'alignement de séquences a ouvert la voie à la biologie synthétique.<br> <br>
   
   
     </span>   
     </span>   
Line 119: Line 120:
   <p style = "text-align : center";>
   <p style = "text-align : center";>
-
               <a href="#top"> <font color="grey"> <b>Back to the top </b> </font> </a> </li>  
+
               <a href="#top"> <font color="grey"> <b>Retour en haut de page </b> </font> </a> </li>  
               <br/>
               <br/>
     </p>
     </p>
Line 125: Line 126:
   <p id="future"> <font color="green" size="5">
   <p id="future"> <font color="green" size="5">
-
         What about the future ?  <br><HR>
+
         Qu'en est-il du futur ?  <br><HR>
       </font>
       </font>
   </p>
   </p>
Line 131: Line 132:
<br/> <br/>
<br/> <br/>
<span style="line-height:1.5em;">
<span style="line-height:1.5em;">
-
Any industrialization phase has a generally favorable social and economic impact, but also an environmental impact, unfortunately often negative.<br> <br>
+
Toute phase d'industrialisation a un impact social et économique globalement favorable, mais aussi un impact environnemental, malheureusement souvent négatif. <br><br>
-
Nuclear technology allowed huge progress but at the cost of several consequences : use as weapon, nuclear accidents (Tchernobyl (1986), Fukushima (2011)) and nuclear waste, with the associated risks of pollution.<br> <br>
+
La technologie nucléaire a permis d'énormes progrès, mais au prix de plusieurs conséquences: l'utiliser de cette dernière comme arme, les accidents nucléaires (Tchernobyl (1986), Fukushima (2011) ...), les déchets nucléaires, et les risques de pollution qui y sont liés <br><br>.
-
We have to consider those same questions with synthetic biology, but we can also go further : by learning from the past, limit our impact by respecting some "good practice" rules, and propose innovative solutions to the problems aroused during the previous century.<br> <br>
+
Nous devons examiner ces mêmes questions avec la biologie synthétique, mais nous pouvons aussi aller plus loin: en apprenant du passé, nous pouvons limiter notre impact en respectant certaines règles de«bonnes pratiques», et ainsi proposer des solutions novatrices aux problèmes intervenus au cours du siècle précédent <br> <br>
-
After the great discoveries in nuclear physics ( end of 19th c), after the industrialiation phase (20th c),we hope the 21st century will be a century of solutions thanks to synthetic biology, iGEM and, maybe, our Cobalt Buster project. <br> <br>   
+
Après les grandes découvertes en physique nucléaire (fin du 19ème s.), après la phase industrialiation (20ème s.), nous espérons que le 21ème siècle sera un siècle de solutions grâce à la biologie synthétique, l'iGEM et, peut-être, notre projet Cobalt Buster.<br> <br>   
     </span>   
     </span>   
   <br>
   <br>
Line 160: Line 161:
<span style="line-height:1.5em;">
<span style="line-height:1.5em;">
-
Some atomic <b>nucleus</b> of an <b>unstable</b> atom lose energy by emitting ionizing particles (&alpha;, &beta;+ or &beta;-).
+
Certains <b>noyaux</ b> atomiques d'atomes <b> instables </ b> perdent de l'énergie en émettant des particules ionisantes(&alpha;, &beta;+ or &beta;-).
-
The emission is <b>spontaneous</b>. This is <b>natural radioactivity</b>.
+
L'émission is <b>spontané</b>. C'est la <b>radioactivité naturelle</b>.
</span>
</span>
Line 169: Line 170:
<span style="line-height:1.5em">
<span style="line-height:1.5em">
-
Researchers have used &alpha; <b>particle to react</b> with another atom such as Beryllium. The result is a Carbon nucleus and <b>a neutron</b>. This is <b>artificial radioactivity</b> or induced radioactivity.
+
Des chercheurs ont utilisé des particules <b>α  pour réagir </b> avec un autre atome comme le Beryllium. Le résultat obtenu est un noyau de carbone et <b> un neutron</b>. C'est de la <b> radioactivité artificielle </ b> ou de la radioactivité induite.
</span>
</span>

Revision as of 18:54, 21 September 2011







Aller plus loin









L'histoire de la Radioactivité




Beaucoup de découvertes scientifiques en physique, en biologie et en informatique ont eu lieu durant le 19éme et le 20éme siècles

La compréhension de la structure de la matière et en particulier de l'atome a permis la découverte et l'explication de la radioactivité (observée par H. Becquerel et les Curie). Cette propriété naturelle ou artificielle de certains éléments a été utilisée dans plusieurs domaines comme la médecine et la production d'énergie électrique. La seconde moitié du 20ème siècle verra son industrialisation.






Retour en haut de page



Histoire des sciences de la vie




En sciences du vivant, les progrès se sont fais lentement. La première découverte significative date du 16ème siècle.
La microbiologie quant à elle a fait son apparition durant la deuxième moitié du 19ème siècle avec L. Pasteur et le travail d'autres scientifiques. Pendant le 20ème siècle, les découvertes sur l'ADN (structure, régulation de l'expression génique, séquençage) ont permis la naissance d'un nouveau domaine:. la biologie moléculaire
Les travaux sur les enzymes de restriction et la Polymerase Chain Reaction (PCR) ont permis par la suite la construction de nouvelles molécules d'ADN.
Les progrès dans les sciences informatiques, l'augmentation de la puissance du calcul informatique, la modélisation et les nouveaux logiciels d'alignement de séquences a ouvert la voie à la biologie synthétique.






Retour en haut de page



Qu'en est-il du futur ?




Toute phase d'industrialisation a un impact social et économique globalement favorable, mais aussi un impact environnemental, malheureusement souvent négatif.

La technologie nucléaire a permis d'énormes progrès, mais au prix de plusieurs conséquences: l'utiliser de cette dernière comme arme, les accidents nucléaires (Tchernobyl (1986), Fukushima (2011) ...), les déchets nucléaires, et les risques de pollution qui y sont liés

. Nous devons examiner ces mêmes questions avec la biologie synthétique, mais nous pouvons aussi aller plus loin: en apprenant du passé, nous pouvons limiter notre impact en respectant certaines règles de«bonnes pratiques», et ainsi proposer des solutions novatrices aux problèmes intervenus au cours du siècle précédent

Après les grandes découvertes en physique nucléaire (fin du 19ème s.), après la phase industrialiation (20ème s.), nous espérons que le 21ème siècle sera un siècle de solutions grâce à la biologie synthétique, l'iGEM et, peut-être, notre projet Cobalt Buster.





Back to the top






What is Radioactivity ?




Certains noyaux atomiques d'atomes instables perdent de l'énergie en émettant des particules ionisantes(α, β+ or β-). L'émission is spontané. C'est la radioactivité naturelle.
Des chercheurs ont utilisé des particules α pour réagir avec un autre atome comme le Beryllium. Le résultat obtenu est un noyau de carbone et un neutron. C'est de la radioactivité artificielle ou de la radioactivité induite.
Researchers then used neutrons to react with atoms (for example 235 Uranium). The result is a bigger nucleus with an exces of neutron leading to an increase of the unstability and the new nucleus can split into 2 smaller nuclei. This phenomenon is the neutronic fission.



Back to the top






Neutronic nuclear fission for energy production




Nuclear Power Plants use neutronic fission to produce energy. In France, reactors are pressurized water reactors (PWR). 235 U, the most desirable isotope of uranium absorbs neutron and then split into 2 smaller nuclei and release a lot of energy + new neutrons able to react with other 235U (nuclear chain reaction).
A nuclear reactor coolant (water in PWR) is circulated past the reactor core to absorb the heat that it generates. The reactor, pipes and steam generator are in steel that contains Carbon, Iron but also Nickel and Cobalt. These atoms (C, Fe, Ni, Co…) are submitted to neutronic activation leading to activation products.


Back to the top






Radiocobalt




59Co is a stable isotope. It can absorb a neutron and become 60Co. This isotope is unstable (half life : 5.272 years). Its disintegration leads to the emission of β particle and γ radiations.

These electromagnetic radiations pass through the matter very easily. To attenuate these rays, lead/concrete shields are necessary. Protective clothing and respirators can protect from internal contact with or ingestion of α or β particles, but provide no protection from γ radiation. To allow human intervention in the Nuclear Power Plant for maintenance, control…, water is filtered continually to remove radioactive atoms.




Back to the top




To remove cobalt…




At present, all waters on nuclear sites (Nuclear Power Plant of course but also all the other industries related to nuclear (nuclear fuel production, radioactive waste treatment…) are filtered on Ion-exchange resins.

The resins are effective but not selective and after use, the resins are a voluminous waste (no possibility of incineration or other treatment). Nowadays, the main challenge in nuclear waste management is the reduction of the quantity (volume).



Back to the top




Cobalt Buster




Cobaltbuster is a biofiltre using modified bacteria able to adsorb more cobalt than wild strain and with the ability to stick on surfaces in the presence of Cobalt.
  • the pollution is concentrated on the bacterial biofilm (volume reduction)

  • the pollution could be screened, using different modified bacteria (for Co, for Ni …) and radioactive element could be separated depending the type of radiations. It could be interesting to separate α-generating or γ-rays generating atoms from the others to better answer ANDRA specifications (ANDRA is the agency in charge of nuclear waste storage in France)

  • the biofilm, removed after use, could also be incinerated (volume reduction).

  • Bacteria cultures are less expensive than ion-exchange resins




Back to the top




Why using a biofilm rather than free cells ?




But what is a BIOFILM ??


Antonie van Leeuwenhoek (XVII century) was the first to observe animacules (as he named them) present in his own dental plaque. These animacules are micro-organisms but more precisely a biofilm of micro-organisms . This discovery was outshine by other important researches. Louis Pasteur (XIX century) was the first to realize a pure culture in liquid medium. This culture method became the reference method for all microbiologists and help them to understand physiologic and genetic mechanisms.

A biofilm is a consortium of different species/genus of micro-organisms (bacteria, algae…) fixed onto a surface.

W. J Costerton described in the 80’s the biofilm as a microbial community developing specific structures (proteins, polysaccharides…) to stick on surfaces or on other micro-organisms. Nowadays, biofilm concept is accepted by a large community of scientists which considers that most of micro-organisms live in biofilm in the environment.



Biofilm vs free-cell


Biofilm can be considered as a cell organization more resistant to environmental “stress” (nutrient depletion, pollutants…).
In case of pollutants, the extra-cellular matrix, synthesized by the biofilm, can play the role of a pollution-trap by adsorption. By this way, taking into account that pollutant are less bio-available ( i.e less toxic), cells can live in presence of higher concentrations. And if bacteria have new functions (Co accumulation for example) given by genetic manipulations, the biofilm is more effective.

The dissemination of modified micro-organisms into the environment is not expected especially if their function is removing pollution. If the modified micro-organism is in a biofilm, pollution and modified micro-organisms are confined. And in the case of radioactive substances, it is essential.



Back to the top




ENS assystem Biomérieux INSA INSA