Team:ULB-Brussels/mat
From 2011.igem.org
(Created page with "tgvrfds") |
|||
Line 1: | Line 1: | ||
- | + | <html> | |
+ | <head> | ||
+ | |||
+ | <!-- affichage des maths --> | ||
+ | <script type="text/javascript" | ||
+ | src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> | ||
+ | </script> | ||
+ | |||
+ | <script type="text/x-mathjax-config"> | ||
+ | MathJax.Hub.Config({ | ||
+ | tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} | ||
+ | }); | ||
+ | |||
+ | </script> | ||
+ | <script type="text/javascript" src="path-to-mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | ||
+ | |||
+ | |||
+ | <style> | ||
+ | |||
+ | #menubar .left-menu noprint{ | ||
+ | color: white; | ||
+ | } | ||
+ | |||
+ | .right-menu{ | ||
+ | background: none; | ||
+ | } | ||
+ | |||
+ | |||
+ | #content { | ||
+ | background: none; | ||
+ | padding:0; | ||
+ | width:100%; | ||
+ | border:0; | ||
+ | margin-top:Opx; | ||
+ | } | ||
+ | |||
+ | |||
+ | |||
+ | #p-logo { | ||
+ | display:none; | ||
+ | } | ||
+ | |||
+ | |||
+ | #top-section { | ||
+ | border:none; | ||
+ | margin: 0 auto; | ||
+ | height:0px ! important; | ||
+ | width:100%; | ||
+ | } | ||
+ | |||
+ | img.bg_team { | ||
+ | /* Set rules to fill background */ | ||
+ | min-height: 100%; | ||
+ | min-width: 1024px; | ||
+ | |||
+ | /* Set up proportionate scaling */ | ||
+ | width: 100%; | ||
+ | height: auto; | ||
+ | |||
+ | /* Set up positioning */ | ||
+ | position: fixed; | ||
+ | top: 0; | ||
+ | left: 0; | ||
+ | z-index:-1; | ||
+ | } | ||
+ | |||
+ | |||
+ | |||
+ | #catlinks{ | ||
+ | width:0px; | ||
+ | height:0px; | ||
+ | display:none; | ||
+ | } | ||
+ | #footer-box{ | ||
+ | width:0px; | ||
+ | height:0px; | ||
+ | display:none; | ||
+ | } | ||
+ | #search-controls { | ||
+ | display:none; | ||
+ | } | ||
+ | |||
+ | #globalWrapper{ | ||
+ | margin:0; | ||
+ | padding:0; | ||
+ | border:0; | ||
+ | } | ||
+ | #top-section { | ||
+ | border:none; | ||
+ | margin: 0 auto; | ||
+ | height:0px ! important; | ||
+ | width:100%; | ||
+ | } | ||
+ | .firstHeading { | ||
+ | display:none; | ||
+ | } | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | body | ||
+ | { | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/0/04/Fondt.png"); | ||
+ | background-repeat: repeat-x; | ||
+ | |||
+ | background-color: #b4b4b4; | ||
+ | } | ||
+ | |||
+ | |||
+ | #header | ||
+ | { | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/1/11/Haut.png"); | ||
+ | width:985px; | ||
+ | height:170px; | ||
+ | margin: auto; | ||
+ | padding-top: 10px; | ||
+ | margin-top: 0px; | ||
+ | } | ||
+ | #main | ||
+ | { | ||
+ | width:980px; | ||
+ | height:2350px;/* A faire varier pour que la barre rouge soit au bonne endroit */ | ||
+ | margin: auto; | ||
+ | padding-left: 5px; | ||
+ | } | ||
+ | |||
+ | #maintext | ||
+ | { | ||
+ | float: left; | ||
+ | width:980px; | ||
+ | } | ||
+ | |||
+ | #menu a{ | ||
+ | color: red; | ||
+ | } | ||
+ | |||
+ | #hmaint | ||
+ | { | ||
+ | color: white; | ||
+ | font-weight: bolder; | ||
+ | float: left; | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/e/e1/Ulbmaintext.png"); | ||
+ | background-repeat:no-repeat; | ||
+ | width:985px; | ||
+ | height: 16px; | ||
+ | padding-left: 4px; | ||
+ | } | ||
+ | |||
+ | #maint | ||
+ | { | ||
+ | float: left; | ||
+ | padding: 20px; | ||
+ | width:980px; | ||
+ | /* Valeur du height de maintext -16px */ | ||
+ | border: 2px inset #27303e; | ||
+ | text-align: justify; | ||
+ | background-color: white; | ||
+ | } | ||
+ | |||
+ | #facebook{ | ||
+ | margin-left: 707px; | ||
+ | height:200px; | ||
+ | } | ||
+ | #joinus{ | ||
+ | background-repeat: no-repeat; | ||
+ | padding-left: 4px; | ||
+ | color: white; | ||
+ | font-weight: bolder; | ||
+ | width:274px; | ||
+ | height:16px; | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/6/6d/Ulbfacebook.png"); | ||
+ | } | ||
+ | |||
+ | #module{ | ||
+ | background-color: white; | ||
+ | width:270px; | ||
+ | height:400px; | ||
+ | border: 2px inset #27303e; | ||
+ | clear:float; | ||
+ | } | ||
+ | |||
+ | #footer{ | ||
+ | width: 980px; | ||
+ | height: 201px; | ||
+ | margin:auto; | ||
+ | text-align: left; | ||
+ | padding-left: 5px; | ||
+ | |||
+ | } | ||
+ | |||
+ | #sponsor{ | ||
+ | width: 440px; | ||
+ | height: 201px; | ||
+ | float: left; | ||
+ | } | ||
+ | |||
+ | #sponsort{ | ||
+ | background-repeat: no-repeat; | ||
+ | padding-left:4px; | ||
+ | color: white; | ||
+ | font-weight: bolder; | ||
+ | width:440px; | ||
+ | height:16px; | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/1/11/Ulbsponsor.png"); | ||
+ | } | ||
+ | |||
+ | #sponsori{ | ||
+ | font-weight: bolder; | ||
+ | background-image:url("https://static.igem.org/mediawiki/2011/e/ed/Logosponsors.png"); | ||
+ | padding: 4px; | ||
+ | color: #690115; | ||
+ | background-color: white; | ||
+ | width:428px; | ||
+ | height:175px; | ||
+ | border: 2px inset #27303e; | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | #photo{ | ||
+ | padding-top: 8px; | ||
+ | background-color: black; | ||
+ | background-repeat: no-repeat; | ||
+ | float: left; | ||
+ | width:245px; | ||
+ | height: 195px; | ||
+ | margin-left: 10px; | ||
+ | } | ||
+ | |||
+ | #photot | ||
+ | { | ||
+ | width:247px; | ||
+ | height: 16px; | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/0/0b/Ulbphoto.png"); | ||
+ | } | ||
+ | |||
+ | #photoi | ||
+ | { | ||
+ | width:247px; | ||
+ | height: 187px; | ||
+ | background-color: black; | ||
+ | } | ||
+ | |||
+ | #event{ | ||
+ | float: left; | ||
+ | margin-left: 10px; | ||
+ | width: 274px; | ||
+ | height: 201px; | ||
+ | } | ||
+ | |||
+ | #nextevent{ | ||
+ | background-repeat: no-repeat; | ||
+ | padding-left: 4px; | ||
+ | color: white; | ||
+ | font-weight: bolder; | ||
+ | width:274px; | ||
+ | height:16px; | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/a/a8/Ulbnextevent.png"); | ||
+ | } | ||
+ | |||
+ | #eventi{ | ||
+ | padding: 4px; | ||
+ | color: white | ||
+ | width:266px; | ||
+ | height: 175px; | ||
+ | border: 2px inset #27303e; | ||
+ | background-color: #690115; | ||
+ | } | ||
+ | |||
+ | #bas{ | ||
+ | margin-top: 4px; | ||
+ | background-image: url("https://static.igem.org/mediawiki/2011/3/34/Ulbbas.png"); | ||
+ | background-repeat: repeat-x; | ||
+ | height: 30px; | ||
+ | margin: auto; | ||
+ | } | ||
+ | |||
+ | #basi{ | ||
+ | padding-top: 5px; | ||
+ | color: white; | ||
+ | text-align: center; | ||
+ | font-size: 11px; | ||
+ | } | ||
+ | |||
+ | #basi a{ | ||
+ | color: white; | ||
+ | } | ||
+ | |||
+ | |||
+ | /*code justine */ | ||
+ | |||
+ | #menu a /* pour changer les laids liens bleu soulignÈs*/ | ||
+ | { | ||
+ | position:relative; | ||
+ | color: white; | ||
+ | text-decoration: none; | ||
+ | text-align: center; | ||
+ | } | ||
+ | |||
+ | #menu | ||
+ | { | ||
+ | position:relative; | ||
+ | top:126px; | ||
+ | font-size: 14px; | ||
+ | color:white; | ||
+ | font-weight: bolder; | ||
+ | widht: 900px; | ||
+ | |||
+ | |||
+ | } | ||
+ | |||
+ | #menu1 /* mise en forme menu1, plein de choses ‡ virer sur la version dÈfinitive*/ | ||
+ | { | ||
+ | width:800px; /* version dÈfinitive:virer ca*/ | ||
+ | height: 20px; /* version dÈfinitive:virer ca*/ | ||
+ | font-size: 14px; | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | #home | ||
+ | { | ||
+ | float:left; | ||
+ | position: absolute; | ||
+ | width: 50px; | ||
+ | height: 20px; | ||
+ | text-align:center; | ||
+ | |||
+ | } | ||
+ | |||
+ | #project | ||
+ | { | ||
+ | float:left; | ||
+ | position: relative; | ||
+ | left: 70px; | ||
+ | width: 70px; | ||
+ | height: 15px; | ||
+ | text-align:center; | ||
+ | |||
+ | } | ||
+ | |||
+ | #modeling | ||
+ | { | ||
+ | float:left; | ||
+ | text-align:center; | ||
+ | position: relative; | ||
+ | width: 90px; | ||
+ | height: 20px; | ||
+ | left:80px; | ||
+ | } | ||
+ | |||
+ | #results | ||
+ | { | ||
+ | float:left; | ||
+ | position: relative; | ||
+ | width: 70px; | ||
+ | height: 20px; | ||
+ | left:90px; | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | #parts | ||
+ | { | ||
+ | float:left; | ||
+ | position: relative; | ||
+ | width: 55px; | ||
+ | height: 20px; | ||
+ | left:100px; | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | #human | ||
+ | { | ||
+ | float:left; | ||
+ | position: relative; | ||
+ | width: 130px; | ||
+ | height: 20px; | ||
+ | left:110px; | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | #team | ||
+ | { | ||
+ | float:left; | ||
+ | position: relative; | ||
+ | width: 85px; | ||
+ | height: 20px; | ||
+ | left:110px; | ||
+ | text-align:center; | ||
+ | margin : auto; | ||
+ | } | ||
+ | |||
+ | #team td | ||
+ | { | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | #sponsors | ||
+ | { | ||
+ | float:left; | ||
+ | position: relative; | ||
+ | width: 90px; | ||
+ | height: 20px; | ||
+ | left:110px; | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | .select | ||
+ | { | ||
+ | height:21px; /* si tu modifies hauteur du menu1, il faut modifier ca aussi. Il ne s'adapte pas automatiquement, parce qu'il fait en fonctiond ela taille du texte */ | ||
+ | background-color:rgb(105,1,21); | ||
+ | } | ||
+ | |||
+ | #menu2 | ||
+ | { | ||
+ | width:985px; | ||
+ | height:18px; | ||
+ | font-size: 12px; | ||
+ | padding-top: 1px; | ||
+ | } | ||
+ | |||
+ | #menu2project /* juste pour dÈcaler l'Ècriture des sous-menus. plus facile que de repositionner chaque sous-menu, surtout quand c'ets les mÍmes pour modeling et results*/ | ||
+ | { | ||
+ | position:relative; | ||
+ | left: 61px; | ||
+ | width:807px; /* version dÈfinitive:virer ca*/ | ||
+ | height:18px; /* version dÈfinitive:virer ca*/ | ||
+ | } | ||
+ | |||
+ | |||
+ | #menu2results /* juste pour dÈcaler l'Ècriture des sous-menus. plus facile que de repositionner chaque sous-menu, surtout quand c'ets les mÍmes pour modeling et results*/ | ||
+ | { | ||
+ | position:relative; | ||
+ | left: 220px; | ||
+ | width:807px; /* version dÈfinitive:virer ca*/ | ||
+ | height:18px; /* version dÈfinitive:virer ca*/ | ||
+ | } | ||
+ | |||
+ | #menu2modeling | ||
+ | { | ||
+ | position:relative; | ||
+ | left:132px; | ||
+ | width:888px; /* version dÈfinitive:virer ca*/ | ||
+ | height:18px; /* version dÈfinitive:virer ca*/ | ||
+ | } | ||
+ | |||
+ | #souspindel /* mise en forme du sous-menu "pindel", aussi bien pour modeling que result*/ | ||
+ | { | ||
+ | position:absolute; | ||
+ | left:50px; | ||
+ | height:18px; | ||
+ | text-align:center; | ||
+ | width:50px; | ||
+ | } | ||
+ | |||
+ | #soushelper /* mise en forme du sous-menu "plasmide helper", aussi bien pour modeling que result*/ | ||
+ | { | ||
+ | position:absolute; | ||
+ | left:111px; | ||
+ | height:18px; | ||
+ | text-align:center; | ||
+ | width:80px; | ||
+ | top:0px; | ||
+ | } | ||
+ | |||
+ | #sousproof /* mise en forme du sous-menu "proof of concept", aussi bien pour modeling que result*/ | ||
+ | { | ||
+ | position:absolute; | ||
+ | left:193px; | ||
+ | height:18px; | ||
+ | text-align:center; | ||
+ | width:120px; | ||
+ | top:0px; | ||
+ | } | ||
+ | |||
+ | |||
+ | .left-menu, .left-menu a { | ||
+ | color: white; | ||
+ | left: 0px; | ||
+ | text-align: left; | ||
+ | color:transparent; | ||
+ | text-transform: lowercase; | ||
+ | |||
+ | } | ||
+ | .left-menu a:hover { | ||
+ | } | ||
+ | .left-menu:hover { | ||
+ | color: white; | ||
+ | background:none; | ||
+ | } | ||
+ | .right-menu, .right-menu a { | ||
+ | right: 0px; | ||
+ | text-align: right; | ||
+ | color: white; | ||
+ | |||
+ | } | ||
+ | #menubar ul { | ||
+ | color: white; | ||
+ | list-style: none; | ||
+ | } | ||
+ | #menubar li { | ||
+ | display: inline; | ||
+ | position: relative; | ||
+ | cursor: pointer; | ||
+ | padding-left: 0px; | ||
+ | padding-right: 0px; | ||
+ | } | ||
+ | .left-menu li a { | ||
+ | padding: 0px 10px 0px 0px; | ||
+ | } | ||
+ | .left-menu .selected { | ||
+ | # color:white; | ||
+ | } | ||
+ | #.left-menu .selected:hover { | ||
+ | # color:white; | ||
+ | #} | ||
+ | |||
+ | .left-menu:hover a { | ||
+ | color: white; | ||
+ | } | ||
+ | .right-menu li { | ||
+ | # background: none; | ||
+ | } | ||
+ | .right-menu li a { | ||
+ | padding: 0px 15px 0px 0px; | ||
+ | color: white; | ||
+ | background: none; | ||
+ | } | ||
+ | .right-menu li a:hover { | ||
+ | color: white; | ||
+ | } | ||
+ | |||
+ | #menu a | ||
+ | { | ||
+ | margin-left:20px; /*espace entre les lien*/ | ||
+ | display:block; /*Pour que le lien soit un vrai bloc*/ | ||
+ | float:left; /*Pour que les blocs soient alignés horizontalement (essayez de l'enlever pour voir)*/ | ||
+ | height:30px; /*La même hauteur que notre menu*/ | ||
+ | border:none; /*On enlève les bordures (enfin, on ne les met pas, même s'il n'y en avait pas)*/ | ||
+ | } | ||
+ | |||
+ | #couleur | ||
+ | { | ||
+ | padding-left: 5px; | ||
+ | padding-right:5px; | ||
+ | background-color: #690115; | ||
+ | } | ||
+ | |||
+ | #sousm | ||
+ | { | ||
+ | clear:left; | ||
+ | position:relative; | ||
+ | top:112px; | ||
+ | margin-left: 135px; /*tu change ici pour le bouger horizontalement*/ | ||
+ | color:white; | ||
+ | widht: 900px; | ||
+ | } | ||
+ | #sousm a | ||
+ | { | ||
+ | position:relative; | ||
+ | color: white; | ||
+ | text-decoration: none; | ||
+ | text-align: center; | ||
+ | margin-left:20px; /*espace entre les lien*/ | ||
+ | display:block; /*Pour que le lien soit un vrai bloc*/ | ||
+ | float:left; /*Pour que les blocs soient alignés horizontalement (essayez de l'enlever pour voir)*/ | ||
+ | height:30px; /*La même hauteur que notre menu*/ | ||
+ | border:none; /*On enlève les bordures (enfin, on ne les met pas, même s'il n'y en avait pas)*/ | ||
+ | } | ||
+ | |||
+ | </style> | ||
+ | |||
+ | </head> | ||
+ | |||
+ | <div id="header"> <!-- Images de logo --> | ||
+ | <div id="menu"> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels">Home</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/project">Project</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/mat">Materials & Method</a> | ||
+ | <a id="couleur" href="https://2011.igem.org/Team:ULB-Brussels/modeling">Modelling</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/human">Human practice</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/Results">Results</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/parts">Parts</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/safety">Safety</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/team">Team</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/sponsors">Sponsors</a> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | <div id="sousm"> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/modeling">Introduction</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/modeling/30">Phase at 30°C</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/modeling/42">Phase at 42°C</a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/modeling/comparison">Comparison with the Wet Lab work </a> | ||
+ | <a href="https://2011.igem.org/Team:ULB-Brussels/modeling/conclusion">Conclusion</a> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | <div id="main"> | ||
+ | <div id="maintext"> | ||
+ | <div id="hmaint"> | ||
+ | Modelling : Phase at 30°C </div> | ||
+ | <div id="maint"> | ||
+ | <h1>Phase at $30^\circ$C on arabinose</h1> | ||
+ | |||
+ | \label{Ph30} | ||
+ | |||
+ | <h2>Transcriptional interference: computer simulation</h2> | ||
+ | |||
+ | \label{IntTranscr} | ||
+ | |||
+ | <p> | ||
+ | In this section, we study the interference in the transcription provoked by the simultaneous expression of the gene coding for the flippase (which is performed only for $\ldots\%$ at $30^\circ$C), and of the three genes $i$ for the Red recombinase (which is performed for $100\%$). | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | \ldots[Jo\&Pierre] | ||
+ | </p> | ||
+ | |||
+ | <h2>Preparation: electroporation and night culture</h2> | ||
+ | |||
+ | <p> | ||
+ | We electropore <em>E. coli</em> with Pindel plasmids. Given that the plasmids include a resistance gene to ampiciline, we can see, by testing that resistance, which bacteria actually received a Pindel plasmid. One colony of those bacteria is then cultivated at $30^\circ$C in $10$ml, where it attains saturation (between $2\cdot10^9$ and $5\cdot10^9$ bacteria per ml). The solution is diluted $100$ to $1000$ times, then cultivated again, until we reach an optic density (OD) (at $600$nm) of $0.2$, which corresponds to approximatively $10^8$ bacteria. Those bacteria are then put in touch with arabinose at $30^\circ$C. | ||
+ | </p> | ||
+ | |||
+ | <h1>Model</h1> | ||
+ | |||
+ | <h2>Getting the equations</h2> | ||
+ | \label{Mod30} | ||
+ | |||
+ | <p> | ||
+ | At the initial time ($t=0$), the concentration of bacteria ($N(t)$) is $N_0:=N(0)\approx10^8\mbox{bact}/\mbox{ml}$. It seems natural to use Verhulst's logistic model | ||
+ | \begin{equation} | ||
+ | \dot N=k_NN\left(1-\frac N{N_{max}}\right) | ||
+ | \label{N30} | ||
+ | \end{equation} | ||
+ | where $N_{max}$ is the maximum concentration of bacteria that is possible in the culture environment and where $k_N$ corresponds to the growth rate one would observe in the limit where the saturation would be inexistent. In our case, the saturation density slightly exceeds $1$ OD (at $600$nm), that is approximatively $N_{max}\approx 2\cdot10^9\mbox{bact}/\mbox{ml}$. On the other hand, since our <em>E. coli</em> ideally duplicate every $20$min, if we are far from the saturation ($N_{max}=\infty$), we obtain | ||
+ | \begin{equation} | ||
+ | \dot N=k_NN \Rightarrow N_0e^{k_Nt}=N(t)=N_02^{t/20\mbox{\footnotesize{min}}} \quad\Rightarrow k_N\approx \frac{\log{2}}{20\cdot60}\mbox{s}^{-1}. | ||
+ | \label{k_N}\end{equation} | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | At this point, all the bacteria contain Pindel. At $30^\circ$C, RepA101 becomes active and is present in sufficient quantities to allow the plasmid's replication; the evolution of $E_{tot}$ and $E$ thus do not matter. However, we shall note that the amount of plasmids per bacterium cannot exceed a certain number $P_{max}\approx20$ (because the origin of replication of the plasmid is <em>low copy</em>). At initial time, the amount of Pindel plasmids per bacterium is $P_0:=P(0)\approx19$. Again, we naturally postulate a logistic model: | ||
+ | \begin{equation} | ||
+ | \dot P=k_PP\left(1-\frac{P}{P_{max}}\right). | ||
+ | \label{production}\end{equation} | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | By the same reasoning we used for $k_N$ (eq(\ref{k_N})), we compute $k_P\approx\frac{\log{2}}{11}\mbox{s}^{-1}$, since our plasmid replicates itself every $11$s (reference?). Moreover, we have to consider the dilution of those plasmids through the population, due to its increase. In that purpose, let us suppose for a moment that the plasmids don't replicate any more; we then have $PN=\mbox{cst}$, thus | ||
+ | \begin{equation} | ||
+ | P=\frac{\mbox{cst}}N\quad\Rightarrow \dot P=-\mbox{cst}\frac{\dot N}{N^2}=-\frac{\dot N}NP. | ||
+ | \label{dilution}\end{equation} | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | Combining both production (eq (\ref{production})) and dilution (eq(\ref{dilution})) effects, we get the evolution equation for $P$: | ||
+ | \begin{equation} | ||
+ | \dot P=k_PP\left(1-\frac P{P_{max}}\right)-\frac{\dot N}NP. | ||
+ | \label{P30}\end{equation} | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | Remark that this equation can be written as follow: | ||
+ | \begin{equation} | ||
+ | \frac d{dt}(NP)=k_PNP\left(1-\frac P{P_{max}}\right), | ||
+ | \label{equNP}\end{equation} | ||
+ | which allows a convenient interpretation: $NP$, the total amount of Pindel plasmids, follows a logistic model but where the saturation is only due to $P$. This seems quite natural, as we will see. The evolution of the amount of plasmids has to be of the form | ||
+ | \begin{equation} | ||
+ | \frac d{dt}(NP)=NP\cdot(b(N,P)-d(N,P)) | ||
+ | \end{equation} | ||
+ | in term of a birth rate of new plasmids $b(N,P)$ and a death rate $d(N,P)$. The death rate is <em>a priori</em> constant and even zero in our case: $d(N,P)=d=0$. Regarding the birth rate, it has to diminish when $P$ increases, but is obviously unlinked with the amount of bacteria $N$; the easiest is then to postulate an affine function $b(N,P)=\alpha-\beta P$, so that we find | ||
+ | \begin{equation} | ||
+ | \frac d{dt}(NP)=NP(\alpha-\beta P) | ||
+ | \end{equation} | ||
+ | which is equivalent to (\ref{equNP}). This observation thus justifies our equation for $P$ (eq(\ref{P30})), initially obtained by heuristic reasoning. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | Arabinose activates Pbad (the promotor of the three-gene sequence $i$ on Pindel), in order that those $3$ genes are expressed. Keeping in mind that the expressed proteins naturally deteriorate, the easiest way to modelise the evolution of their quantity ($G_i$) is | ||
+ | \begin{equation} | ||
+ | \dot{G_i}=C_iP-D_iG_i \quad (i=1,2,3) | ||
+ | \label{Gi30}\end{equation} | ||
+ | where $C_i$ is the production rate of the protein $i$ by the Pindel plasmid and $D_i$ the deterioration rate of that same protein. We estimated $C_i\approx\ldots$ and $D_i\approx\ldots$. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | The promotor of flippase is repressed by a thermo-sensible repressor, and, at $30^\circ$C, is only partially activated ($\ldots\%$); in addition, the transcription is hindered by a possible interference with the transcription of the genes $i$. By a computer simulation, we have been able to estimate $p_{simul}$, the probability that the flippase sequence gets entirely transcribed (see section \ref{IntTranscr}). Remark that at $30^\circ$C flippase is entirely active. If we take furthermore the natural deterioration of flippase in account, we can write | ||
+ | \begin{equation} | ||
+ | \dot{F}=C_Fp_{simul}P-D_FF | ||
+ | \label{F30}\end{equation} | ||
+ | where $C_F$ is the production rate of flippase by Pindel (in ideal conditions, at $100\%$ of its activity) and $D_F$ the natural deterioration rate of flippase. We estimated that $C_F\approx\ldots$ et $D_F\approx0.01$. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | We thereby obtain the following system (see eqs (\ref{N30}), (\ref{P30}), (\ref{Gi30}) and (\ref{F30})): | ||
+ | \begin{numcases}{} | ||
+ | \dot{N}=k_NN\left(1-\frac N{N_{max}}\right)\label{N30f}\\ | ||
+ | \dot{P}=k_PP\left(1-\frac{P}{P_{max}}\right)-\frac{\dot N}NP\label{P30f}\\ | ||
+ | \dot{G_i}=C_iP-D_iG_i \qquad (i=1,2,3)\label{Gi30f}\\ | ||
+ | \dot{F}=C_Fp_{simul}P-D_FF\label{F30f} | ||
+ | \end{numcases} | ||
+ | </p> | ||
+ | |||
+ | <h2>Solving the equations</h2> | ||
+ | |||
+ | <p> | ||
+ | In order to solve the first equation (eq(\ref{N30f})), we pose $M=1/N$; the equation then reads | ||
+ | \begin{equation} | ||
+ | \dot M=-\frac{\dot N}{N^2}=-k_N\left(\frac1N-\frac1{N_{max}}\right)=-k_NM+\frac {k_N}{N_{max}} | ||
+ | \end{equation} | ||
+ | and easily get solved to give | ||
+ | \begin{equation} | ||
+ | M(t)=\frac1{N_{max}}+(\frac1{N_0}-\frac1{N_{max}})e^{-k_Nt} | ||
+ | \end{equation} | ||
+ | thus | ||
+ | \begin{equation} | ||
+ | N(t)=\frac{N_{max}N_0e^{k_Nt}}{N_0e^{k_Nt}+(N_{max}-N_0)}=N_0e^{k_Nt}\frac1{1+\frac{N_0}{N_{max}}\left(e^{k_Nt}-1\right)}\overset{\star}{\approx} N_0e^{k_Nt} | ||
+ | \end{equation} | ||
+ | where the approximation ($\star$) remains valid for short times, that is | ||
+ | \begin{equation} | ||
+ | t\ll\frac1{k_N}\log{(\frac{N_{max}}{N_0}+1)}\approx5271\mbox{s}=1\mbox{h}27\mbox{min}51\mbox{s}. | ||
+ | \end{equation} | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | Saturation is reached when $t\approx9000\mbox{s}=2\mbox{h}30\mbox{min}$, as we can see on the following graph (obtained for realistic values of the parameters) | ||
+ | \[\mbox{[insert graphic 1]}\] | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | The equation for $P$ (eq(\ref{P30f})) then becomes | ||
+ | \begin{equation} | ||
+ | \dot P=k_PP\left(1-\frac{P}{P_{max}}\right)-k_N\frac{N_{max}-N_0}{N_0e^{k_Nt}+(N_{max}-N_0)}P | ||
+ | \end{equation} | ||
+ | which cannot be solved analytically. However, we can solve it numerically using <em>Mathematica</em>: for realistic values of the parameters, | ||
+ | \[\mbox{[insert graphic 2]}\] | ||
+ | We observe that $P(t)\approx P_{max}$ as soon as $t\gtrsim50\mbox{s}$. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | The two last equations, for $F$ and $G_i$ (eqs (\ref{F30f}) and (\ref{Gi30f})), can also be solved via <em>Mathematica</em>: for realistic constants, | ||
+ | \begin{description} | ||
+ | \item{for $F$:} | ||
+ | \[\mbox{[insert graphic 3]}\] | ||
+ | \item{for $G_i$:} | ||
+ | \[\mbox{[insert graphic 4]}\] | ||
+ | \end{description} | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | As soon as $t\approx\ldots$, $G_i$ reaches its asymptotic maximum $C_iP_{max}/D_i\approx\ldots$ and $F$ reaches its asymptotic maximum $C_Fp_{simul}P_{max}/D_F\approx\ldots$. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | It is important to point out that here, the solution of our model only presents a small sensitivity to the parameters around the estimated values: a small error on the parameters will only result in a small change in the solution, as we can observe if we vary the values of the parameters a little around their estimation. [mettre Žventuellement un lien vers une page avec tous les fichiers cdf] | ||
+ | </p> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div id="bas"> | ||
+ | <div id="basi"> | ||
+ | iGEM ULB Brussels Team - <a href="mailto:lvmelder@ulb.ac.be">Contact us</a> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | </html> |
Revision as of 12:08, 21 September 2011
Phase at $30^\circ$C on arabinose
\label{Ph30}Transcriptional interference: computer simulation
\label{IntTranscr}In this section, we study the interference in the transcription provoked by the simultaneous expression of the gene coding for the flippase (which is performed only for $\ldots\%$ at $30^\circ$C), and of the three genes $i$ for the Red recombinase (which is performed for $100\%$).
\ldots[Jo\&Pierre]
Preparation: electroporation and night culture
We electropore E. coli with Pindel plasmids. Given that the plasmids include a resistance gene to ampiciline, we can see, by testing that resistance, which bacteria actually received a Pindel plasmid. One colony of those bacteria is then cultivated at $30^\circ$C in $10$ml, where it attains saturation (between $2\cdot10^9$ and $5\cdot10^9$ bacteria per ml). The solution is diluted $100$ to $1000$ times, then cultivated again, until we reach an optic density (OD) (at $600$nm) of $0.2$, which corresponds to approximatively $10^8$ bacteria. Those bacteria are then put in touch with arabinose at $30^\circ$C.
Model
Getting the equations
\label{Mod30}At the initial time ($t=0$), the concentration of bacteria ($N(t)$) is $N_0:=N(0)\approx10^8\mbox{bact}/\mbox{ml}$. It seems natural to use Verhulst's logistic model \begin{equation} \dot N=k_NN\left(1-\frac N{N_{max}}\right) \label{N30} \end{equation} where $N_{max}$ is the maximum concentration of bacteria that is possible in the culture environment and where $k_N$ corresponds to the growth rate one would observe in the limit where the saturation would be inexistent. In our case, the saturation density slightly exceeds $1$ OD (at $600$nm), that is approximatively $N_{max}\approx 2\cdot10^9\mbox{bact}/\mbox{ml}$. On the other hand, since our E. coli ideally duplicate every $20$min, if we are far from the saturation ($N_{max}=\infty$), we obtain \begin{equation} \dot N=k_NN \Rightarrow N_0e^{k_Nt}=N(t)=N_02^{t/20\mbox{\footnotesize{min}}} \quad\Rightarrow k_N\approx \frac{\log{2}}{20\cdot60}\mbox{s}^{-1}. \label{k_N}\end{equation}
At this point, all the bacteria contain Pindel. At $30^\circ$C, RepA101 becomes active and is present in sufficient quantities to allow the plasmid's replication; the evolution of $E_{tot}$ and $E$ thus do not matter. However, we shall note that the amount of plasmids per bacterium cannot exceed a certain number $P_{max}\approx20$ (because the origin of replication of the plasmid is low copy). At initial time, the amount of Pindel plasmids per bacterium is $P_0:=P(0)\approx19$. Again, we naturally postulate a logistic model: \begin{equation} \dot P=k_PP\left(1-\frac{P}{P_{max}}\right). \label{production}\end{equation}
By the same reasoning we used for $k_N$ (eq(\ref{k_N})), we compute $k_P\approx\frac{\log{2}}{11}\mbox{s}^{-1}$, since our plasmid replicates itself every $11$s (reference?). Moreover, we have to consider the dilution of those plasmids through the population, due to its increase. In that purpose, let us suppose for a moment that the plasmids don't replicate any more; we then have $PN=\mbox{cst}$, thus \begin{equation} P=\frac{\mbox{cst}}N\quad\Rightarrow \dot P=-\mbox{cst}\frac{\dot N}{N^2}=-\frac{\dot N}NP. \label{dilution}\end{equation}
Combining both production (eq (\ref{production})) and dilution (eq(\ref{dilution})) effects, we get the evolution equation for $P$: \begin{equation} \dot P=k_PP\left(1-\frac P{P_{max}}\right)-\frac{\dot N}NP. \label{P30}\end{equation}
Remark that this equation can be written as follow: \begin{equation} \frac d{dt}(NP)=k_PNP\left(1-\frac P{P_{max}}\right), \label{equNP}\end{equation} which allows a convenient interpretation: $NP$, the total amount of Pindel plasmids, follows a logistic model but where the saturation is only due to $P$. This seems quite natural, as we will see. The evolution of the amount of plasmids has to be of the form \begin{equation} \frac d{dt}(NP)=NP\cdot(b(N,P)-d(N,P)) \end{equation} in term of a birth rate of new plasmids $b(N,P)$ and a death rate $d(N,P)$. The death rate is a priori constant and even zero in our case: $d(N,P)=d=0$. Regarding the birth rate, it has to diminish when $P$ increases, but is obviously unlinked with the amount of bacteria $N$; the easiest is then to postulate an affine function $b(N,P)=\alpha-\beta P$, so that we find \begin{equation} \frac d{dt}(NP)=NP(\alpha-\beta P) \end{equation} which is equivalent to (\ref{equNP}). This observation thus justifies our equation for $P$ (eq(\ref{P30})), initially obtained by heuristic reasoning.
Arabinose activates Pbad (the promotor of the three-gene sequence $i$ on Pindel), in order that those $3$ genes are expressed. Keeping in mind that the expressed proteins naturally deteriorate, the easiest way to modelise the evolution of their quantity ($G_i$) is \begin{equation} \dot{G_i}=C_iP-D_iG_i \quad (i=1,2,3) \label{Gi30}\end{equation} where $C_i$ is the production rate of the protein $i$ by the Pindel plasmid and $D_i$ the deterioration rate of that same protein. We estimated $C_i\approx\ldots$ and $D_i\approx\ldots$.
The promotor of flippase is repressed by a thermo-sensible repressor, and, at $30^\circ$C, is only partially activated ($\ldots\%$); in addition, the transcription is hindered by a possible interference with the transcription of the genes $i$. By a computer simulation, we have been able to estimate $p_{simul}$, the probability that the flippase sequence gets entirely transcribed (see section \ref{IntTranscr}). Remark that at $30^\circ$C flippase is entirely active. If we take furthermore the natural deterioration of flippase in account, we can write \begin{equation} \dot{F}=C_Fp_{simul}P-D_FF \label{F30}\end{equation} where $C_F$ is the production rate of flippase by Pindel (in ideal conditions, at $100\%$ of its activity) and $D_F$ the natural deterioration rate of flippase. We estimated that $C_F\approx\ldots$ et $D_F\approx0.01$.
We thereby obtain the following system (see eqs (\ref{N30}), (\ref{P30}), (\ref{Gi30}) and (\ref{F30})): \begin{numcases}{} \dot{N}=k_NN\left(1-\frac N{N_{max}}\right)\label{N30f}\\ \dot{P}=k_PP\left(1-\frac{P}{P_{max}}\right)-\frac{\dot N}NP\label{P30f}\\ \dot{G_i}=C_iP-D_iG_i \qquad (i=1,2,3)\label{Gi30f}\\ \dot{F}=C_Fp_{simul}P-D_FF\label{F30f} \end{numcases}
Solving the equations
In order to solve the first equation (eq(\ref{N30f})), we pose $M=1/N$; the equation then reads \begin{equation} \dot M=-\frac{\dot N}{N^2}=-k_N\left(\frac1N-\frac1{N_{max}}\right)=-k_NM+\frac {k_N}{N_{max}} \end{equation} and easily get solved to give \begin{equation} M(t)=\frac1{N_{max}}+(\frac1{N_0}-\frac1{N_{max}})e^{-k_Nt} \end{equation} thus \begin{equation} N(t)=\frac{N_{max}N_0e^{k_Nt}}{N_0e^{k_Nt}+(N_{max}-N_0)}=N_0e^{k_Nt}\frac1{1+\frac{N_0}{N_{max}}\left(e^{k_Nt}-1\right)}\overset{\star}{\approx} N_0e^{k_Nt} \end{equation} where the approximation ($\star$) remains valid for short times, that is \begin{equation} t\ll\frac1{k_N}\log{(\frac{N_{max}}{N_0}+1)}\approx5271\mbox{s}=1\mbox{h}27\mbox{min}51\mbox{s}. \end{equation}
Saturation is reached when $t\approx9000\mbox{s}=2\mbox{h}30\mbox{min}$, as we can see on the following graph (obtained for realistic values of the parameters) \[\mbox{[insert graphic 1]}\]
The equation for $P$ (eq(\ref{P30f})) then becomes \begin{equation} \dot P=k_PP\left(1-\frac{P}{P_{max}}\right)-k_N\frac{N_{max}-N_0}{N_0e^{k_Nt}+(N_{max}-N_0)}P \end{equation} which cannot be solved analytically. However, we can solve it numerically using Mathematica: for realistic values of the parameters, \[\mbox{[insert graphic 2]}\] We observe that $P(t)\approx P_{max}$ as soon as $t\gtrsim50\mbox{s}$.
The two last equations, for $F$ and $G_i$ (eqs (\ref{F30f}) and (\ref{Gi30f})), can also be solved via Mathematica: for realistic constants, \begin{description} \item{for $F$:} \[\mbox{[insert graphic 3]}\] \item{for $G_i$:} \[\mbox{[insert graphic 4]}\] \end{description}
As soon as $t\approx\ldots$, $G_i$ reaches its asymptotic maximum $C_iP_{max}/D_i\approx\ldots$ and $F$ reaches its asymptotic maximum $C_Fp_{simul}P_{max}/D_F\approx\ldots$.
It is important to point out that here, the solution of our model only presents a small sensitivity to the parameters around the estimated values: a small error on the parameters will only result in a small change in the solution, as we can observe if we vary the values of the parameters a little around their estimation. [mettre Žventuellement un lien vers une page avec tous les fichiers cdf]