Team:ULB-Brussels/mat

From 2011.igem.org

(Difference between revisions)
(Created page with "tgvrfds")
Line 1: Line 1:
-
tgvrfds
+
<html>
 +
<head>
 +
 
 +
<!-- affichage des maths -->
 +
<script type="text/javascript"
 +
  src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 +
</script>
 +
 
 +
<script type="text/x-mathjax-config">
 +
MathJax.Hub.Config({
 +
  tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}
 +
});
 +
 
 +
</script>
 +
<script type="text/javascript" src="path-to-mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 +
 
 +
 
 +
<style>
 +
 
 +
#menubar .left-menu noprint{
 +
color: white;
 +
}
 +
 
 +
.right-menu{
 +
background: none;
 +
}
 +
 
 +
 
 +
#content {
 +
background: none;
 +
padding:0;
 +
width:100%;
 +
border:0;
 +
margin-top:Opx;
 +
}
 +
 
 +
 
 +
 
 +
#p-logo {
 +
display:none;
 +
}
 +
 
 +
 
 +
#top-section {
 +
border:none;
 +
margin: 0 auto;
 +
height:0px  ! important;
 +
width:100%;
 +
}
 +
 
 +
img.bg_team {
 +
/* Set rules to fill background */
 +
min-height: 100%;
 +
min-width: 1024px;
 +
 
 +
/* Set up proportionate scaling */
 +
width: 100%;
 +
height: auto;
 +
 
 +
/* Set up positioning */
 +
position: fixed;
 +
top: 0;
 +
left: 0;
 +
z-index:-1;
 +
}
 +
 
 +
 
 +
 
 +
#catlinks{
 +
width:0px;
 +
height:0px;
 +
display:none;
 +
}
 +
#footer-box{
 +
width:0px;
 +
height:0px;
 +
display:none;
 +
}
 +
#search-controls {
 +
display:none;
 +
}
 +
 
 +
#globalWrapper{
 +
margin:0;
 +
padding:0;
 +
border:0;
 +
}
 +
#top-section {
 +
border:none;
 +
margin: 0 auto;
 +
height:0px  ! important;
 +
width:100%;
 +
}
 +
.firstHeading {
 +
display:none;
 +
}
 +
 
 +
 
 +
 
 +
 
 +
  body
 +
{
 +
  background-image: url("https://static.igem.org/mediawiki/2011/0/04/Fondt.png");
 +
background-repeat: repeat-x;
 +
 
 +
  background-color:  #b4b4b4;
 +
  }
 +
 
 +
 
 +
#header
 +
{
 +
background-image: url("https://static.igem.org/mediawiki/2011/1/11/Haut.png");
 +
width:985px;
 +
height:170px;
 +
margin: auto;
 +
padding-top: 10px;
 +
margin-top: 0px;
 +
}
 +
#main
 +
{
 +
width:980px;
 +
height:2350px;/* A faire varier pour que la barre rouge soit au bonne endroit */
 +
margin: auto;
 +
padding-left: 5px;
 +
}
 +
 
 +
#maintext
 +
{
 +
float: left;
 +
width:980px;
 +
}
 +
 
 +
#menu a{
 +
color: red;
 +
}
 +
 
 +
#hmaint
 +
{
 +
color: white;
 +
font-weight: bolder;
 +
float: left;
 +
background-image: url("https://static.igem.org/mediawiki/2011/e/e1/Ulbmaintext.png");
 +
background-repeat:no-repeat;
 +
width:985px;
 +
height: 16px;
 +
padding-left: 4px;
 +
}
 +
 
 +
#maint
 +
{
 +
float: left;
 +
padding: 20px;
 +
width:980px;
 +
/* Valeur du height de maintext -16px */
 +
border: 2px inset #27303e;
 +
text-align: justify;
 +
background-color: white;
 +
}
 +
 
 +
#facebook{
 +
margin-left: 707px;
 +
height:200px;
 +
}
 +
#joinus{
 +
background-repeat: no-repeat;
 +
padding-left: 4px;
 +
color: white;
 +
font-weight: bolder;
 +
width:274px;
 +
height:16px;
 +
background-image: url("https://static.igem.org/mediawiki/2011/6/6d/Ulbfacebook.png");
 +
}
 +
 
 +
#module{
 +
background-color: white;
 +
width:270px;
 +
height:400px;
 +
border: 2px inset #27303e;
 +
clear:float;
 +
}
 +
 
 +
#footer{
 +
width: 980px;
 +
height: 201px;
 +
margin:auto;
 +
text-align: left;
 +
padding-left: 5px;
 +
 
 +
}
 +
 
 +
#sponsor{
 +
width: 440px;
 +
height: 201px;
 +
float: left;
 +
}
 +
 
 +
#sponsort{
 +
background-repeat: no-repeat;
 +
padding-left:4px;
 +
color: white;
 +
font-weight: bolder;
 +
width:440px;
 +
height:16px;
 +
background-image: url("https://static.igem.org/mediawiki/2011/1/11/Ulbsponsor.png");
 +
}
 +
 
 +
#sponsori{
 +
font-weight: bolder;
 +
background-image:url("https://static.igem.org/mediawiki/2011/e/ed/Logosponsors.png");
 +
padding: 4px;
 +
color: #690115;
 +
background-color: white;
 +
width:428px;
 +
height:175px;
 +
border: 2px inset #27303e;
 +
text-align:center;
 +
}
 +
 
 +
#photo{
 +
padding-top: 8px;
 +
background-color: black;
 +
background-repeat: no-repeat;
 +
float: left;
 +
width:245px;
 +
height: 195px;
 +
margin-left: 10px;
 +
}
 +
 
 +
#photot
 +
{
 +
width:247px;
 +
height: 16px;
 +
background-image: url("https://static.igem.org/mediawiki/2011/0/0b/Ulbphoto.png");
 +
}
 +
 
 +
#photoi
 +
{
 +
width:247px;
 +
height: 187px;
 +
background-color: black;
 +
}
 +
 
 +
#event{
 +
float: left;
 +
margin-left: 10px;
 +
width: 274px;
 +
height: 201px;
 +
}
 +
 
 +
#nextevent{
 +
background-repeat: no-repeat;
 +
padding-left: 4px;
 +
color: white;
 +
font-weight: bolder;
 +
width:274px;
 +
height:16px;
 +
background-image: url("https://static.igem.org/mediawiki/2011/a/a8/Ulbnextevent.png");
 +
}
 +
 
 +
#eventi{
 +
padding: 4px;
 +
color: white
 +
width:266px;
 +
height: 175px;
 +
border: 2px inset #27303e;
 +
background-color: #690115;
 +
}
 +
 
 +
#bas{
 +
margin-top: 4px;
 +
background-image: url("https://static.igem.org/mediawiki/2011/3/34/Ulbbas.png");
 +
background-repeat: repeat-x;
 +
height: 30px;
 +
  margin: auto;
 +
}
 +
 
 +
#basi{
 +
padding-top: 5px;
 +
color: white;
 +
text-align: center;
 +
font-size: 11px;
 +
}
 +
 
 +
#basi a{
 +
color: white;
 +
}
 +
 
 +
 
 +
/*code justine */
 +
 
 +
#menu a /* pour changer les laids liens bleu soulignÈs*/
 +
{
 +
position:relative;
 +
color: white;
 +
text-decoration: none;
 +
text-align: center;
 +
}
 +
 
 +
#menu
 +
{
 +
position:relative;
 +
top:126px;
 +
font-size: 14px;
 +
color:white;
 +
font-weight: bolder;
 +
widht: 900px;
 +
 
 +
 
 +
}
 +
 
 +
#menu1 /* mise en forme menu1, plein de choses ‡ virer sur la version dÈfinitive*/
 +
{
 +
width:800px; /* version dÈfinitive:virer ca*/
 +
height: 20px; /* version dÈfinitive:virer ca*/
 +
font-size: 14px;
 +
text-align:center;
 +
}
 +
 
 +
#home
 +
{
 +
float:left;
 +
position: absolute;
 +
width: 50px;
 +
height: 20px;
 +
text-align:center;
 +
 
 +
}
 +
 
 +
#project
 +
{
 +
float:left;
 +
position: relative;
 +
left: 70px;
 +
width: 70px;
 +
height: 15px;
 +
text-align:center;
 +
 
 +
}
 +
 
 +
#modeling
 +
{
 +
float:left;
 +
text-align:center;
 +
position: relative;
 +
width: 90px;
 +
height: 20px;
 +
left:80px;
 +
}
 +
 
 +
#results
 +
{
 +
float:left;
 +
position: relative;
 +
width: 70px;
 +
height: 20px;
 +
left:90px;
 +
text-align:center;
 +
}
 +
 
 +
#parts
 +
{
 +
float:left;
 +
position: relative;
 +
width: 55px;
 +
height: 20px;
 +
left:100px;
 +
text-align:center;
 +
}
 +
 
 +
#human
 +
{
 +
float:left;
 +
position: relative;
 +
width: 130px;
 +
height: 20px;
 +
left:110px;
 +
text-align:center;
 +
}
 +
 
 +
#team
 +
{
 +
float:left;
 +
position: relative;
 +
width: 85px;
 +
height: 20px;
 +
left:110px;
 +
text-align:center;
 +
margin : auto;
 +
}
 +
 
 +
#team  td
 +
{
 +
text-align:center;
 +
}
 +
 
 +
#sponsors
 +
{
 +
float:left;
 +
position: relative;
 +
width: 90px;
 +
height: 20px;
 +
left:110px;
 +
text-align:center;
 +
}
 +
 
 +
.select
 +
{
 +
height:21px; /* si tu modifies hauteur du menu1, il faut modifier ca aussi. Il ne s'adapte pas automatiquement, parce qu'il fait en fonctiond  ela taille du texte */
 +
background-color:rgb(105,1,21);
 +
}
 +
 
 +
#menu2
 +
{
 +
width:985px;
 +
height:18px;
 +
font-size: 12px;
 +
padding-top: 1px;
 +
}
 +
 
 +
#menu2project /* juste pour dÈcaler l'Ècriture des sous-menus. plus facile que de repositionner chaque sous-menu, surtout quand c'ets les mÍmes pour modeling et results*/
 +
{
 +
position:relative;
 +
left: 61px;
 +
width:807px; /* version dÈfinitive:virer ca*/
 +
height:18px; /* version dÈfinitive:virer ca*/
 +
}
 +
 
 +
 
 +
#menu2results /* juste pour dÈcaler l'Ècriture des sous-menus. plus facile que de repositionner chaque sous-menu, surtout quand c'ets les mÍmes pour modeling et results*/
 +
{
 +
position:relative;
 +
left: 220px;
 +
width:807px; /* version dÈfinitive:virer ca*/
 +
height:18px; /* version dÈfinitive:virer ca*/
 +
}
 +
 
 +
#menu2modeling
 +
{
 +
position:relative;
 +
left:132px;
 +
width:888px;  /* version dÈfinitive:virer ca*/
 +
height:18px;  /* version dÈfinitive:virer ca*/
 +
}
 +
 
 +
#souspindel /* mise en forme du sous-menu "pindel", aussi bien pour modeling que result*/
 +
{
 +
position:absolute;
 +
left:50px;
 +
height:18px;
 +
text-align:center;
 +
width:50px;
 +
}
 +
 
 +
#soushelper /* mise en forme du sous-menu "plasmide helper", aussi bien pour modeling que result*/
 +
{
 +
position:absolute;
 +
left:111px;
 +
height:18px;
 +
text-align:center;
 +
width:80px;
 +
top:0px;
 +
}
 +
 
 +
#sousproof /* mise en forme du sous-menu "proof of concept", aussi bien pour modeling que result*/
 +
{
 +
position:absolute;
 +
left:193px;
 +
height:18px;
 +
text-align:center;
 +
width:120px;
 +
top:0px;
 +
}  
 +
 
 +
 
 +
.left-menu, .left-menu a {
 +
color: white;   
 +
left: 0px;
 +
    text-align: left;
 +
    color:transparent;
 +
    text-transform: lowercase;
 +
 
 +
}
 +
.left-menu a:hover {
 +
}
 +
.left-menu:hover {
 +
    color: white;
 +
    background:none;
 +
}
 +
.right-menu, .right-menu a {
 +
    right: 0px;
 +
    text-align: right;
 +
    color: white;
 +
 
 +
}
 +
#menubar ul {
 +
    color: white;
 +
    list-style: none;
 +
}
 +
#menubar li {
 +
    display: inline;
 +
    position: relative;
 +
    cursor: pointer;
 +
    padding-left: 0px;
 +
    padding-right: 0px;
 +
}
 +
.left-menu li a {
 +
    padding: 0px 10px 0px 0px;
 +
}
 +
.left-menu .selected {
 +
#    color:white;
 +
}
 +
#.left-menu .selected:hover {
 +
#    color:white;
 +
#}
 +
 
 +
.left-menu:hover a {
 +
    color: white;
 +
}
 +
.right-menu li {
 +
#    background: none;
 +
}
 +
.right-menu li a {
 +
    padding: 0px 15px 0px 0px;
 +
    color: white;
 +
    background: none;
 +
}
 +
.right-menu li a:hover {
 +
    color: white;
 +
}
 +
 
 +
#menu a
 +
  {
 +
  margin-left:20px; /*espace entre les lien*/
 +
  display:block; /*Pour que le lien soit un vrai bloc*/
 +
  float:left; /*Pour que les blocs soient alignés horizontalement (essayez de l'enlever pour voir)*/
 +
  height:30px; /*La même hauteur que notre menu*/
 +
  border:none; /*On enlève les bordures (enfin, on ne les met pas, même s'il n'y en avait pas)*/
 +
  }
 +
 
 +
#couleur
 +
{
 +
padding-left: 5px;
 +
padding-right:5px;
 +
background-color: #690115;
 +
}
 +
 
 +
#sousm
 +
{
 +
clear:left;
 +
position:relative;
 +
top:112px;
 +
margin-left: 135px; /*tu change ici pour le bouger horizontalement*/
 +
color:white;
 +
widht: 900px;
 +
}
 +
#sousm a
 +
  {
 +
position:relative;
 +
color: white;
 +
text-decoration: none;
 +
text-align: center;
 +
  margin-left:20px; /*espace entre les lien*/
 +
  display:block; /*Pour que le lien soit un vrai bloc*/
 +
  float:left; /*Pour que les blocs soient alignés horizontalement (essayez de l'enlever pour voir)*/
 +
  height:30px; /*La même hauteur que notre menu*/
 +
  border:none; /*On enlève les bordures (enfin, on ne les met pas, même s'il n'y en avait pas)*/
 +
  }
 +
 
 +
  </style>
 +
 
 +
</head>
 +
 
 +
    <div id="header"> <!-- Images de logo -->
 +
<div id="menu">
 +
<a href="https://2011.igem.org/Team:ULB-Brussels">Home</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/project">Project</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/mat">Materials & Method</a>
 +
<a id="couleur"  href="https://2011.igem.org/Team:ULB-Brussels/modeling">Modelling</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/human">Human practice</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/Results">Results</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/parts">Parts</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/safety">Safety</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/team">Team</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/sponsors">Sponsors</a>
 +
 
 +
</div>
 +
 
 +
<div id="sousm">
 +
<a  href="https://2011.igem.org/Team:ULB-Brussels/modeling">Introduction</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/modeling/30">Phase at 30°C</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/modeling/42">Phase at 42°C</a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/modeling/comparison">Comparison with the Wet Lab work </a>
 +
<a href="https://2011.igem.org/Team:ULB-Brussels/modeling/conclusion">Conclusion</a>
 +
</div>
 +
 
 +
</div>
 +
 
 +
<div id="main">
 +
<div id="maintext">
 +
<div id="hmaint">
 +
Modelling : Phase at 30°C </div>
 +
<div id="maint">
 +
<h1>Phase at $30^\circ$C on arabinose</h1>
 +
 
 +
\label{Ph30}
 +
 
 +
<h2>Transcriptional interference: computer simulation</h2>
 +
 
 +
\label{IntTranscr}
 +
 
 +
<p>
 +
In this section, we study the interference in the transcription provoked by the simultaneous expression of the gene coding for the flippase (which is performed only for $\ldots\%$ at $30^\circ$C), and of the three genes $i$ for the Red recombinase (which is performed for $100\%$).
 +
</p>
 +
 
 +
<p>
 +
\ldots[Jo\&Pierre]
 +
</p>
 +
 
 +
<h2>Preparation: electroporation and night culture</h2>
 +
 
 +
<p>
 +
We electropore <em>E. coli</em> with Pindel plasmids. Given that the plasmids include a resistance gene to ampiciline, we can see, by testing that resistance, which bacteria actually received a Pindel plasmid. One colony of those bacteria is then cultivated at $30^\circ$C in $10$ml, where it attains saturation (between $2\cdot10^9$ and $5\cdot10^9$ bacteria per ml). The solution is diluted $100$ to $1000$ times, then cultivated again, until we reach an optic density (OD) (at $600$nm) of $0.2$, which corresponds to approximatively $10^8$ bacteria. Those bacteria are then put in touch with arabinose at $30^\circ$C.
 +
</p>
 +
 
 +
<h1>Model</h1>
 +
 
 +
<h2>Getting the equations</h2>
 +
\label{Mod30}
 +
 
 +
<p>
 +
At the initial time ($t=0$), the concentration of bacteria ($N(t)$) is $N_0:=N(0)\approx10^8\mbox{bact}/\mbox{ml}$. It seems natural to use Verhulst's logistic model
 +
\begin{equation}
 +
\dot N=k_NN\left(1-\frac N{N_{max}}\right)
 +
\label{N30}
 +
\end{equation}
 +
where $N_{max}$ is the maximum concentration of bacteria that is possible in the culture environment and where $k_N$ corresponds to the growth rate one would observe in the limit where the saturation would be inexistent. In our case, the saturation density slightly exceeds $1$ OD (at $600$nm), that is approximatively $N_{max}\approx 2\cdot10^9\mbox{bact}/\mbox{ml}$. On the other hand, since our <em>E. coli</em> ideally duplicate every $20$min, if we are far from the saturation ($N_{max}=\infty$), we obtain
 +
\begin{equation}
 +
\dot N=k_NN \Rightarrow N_0e^{k_Nt}=N(t)=N_02^{t/20\mbox{\footnotesize{min}}} \quad\Rightarrow k_N\approx \frac{\log{2}}{20\cdot60}\mbox{s}^{-1}.
 +
\label{k_N}\end{equation}
 +
</p>
 +
 
 +
<p>
 +
At this point, all the bacteria contain Pindel. At $30^\circ$C, RepA101 becomes active and is present in sufficient quantities to allow the plasmid's replication; the evolution of $E_{tot}$ and $E$ thus do not matter. However, we shall note that the amount of plasmids per bacterium cannot exceed a certain number $P_{max}\approx20$ (because the origin of replication of the plasmid is <em>low copy</em>). At initial time, the amount of Pindel plasmids per bacterium is $P_0:=P(0)\approx19$. Again, we naturally postulate a logistic model:
 +
\begin{equation}
 +
\dot P=k_PP\left(1-\frac{P}{P_{max}}\right).
 +
\label{production}\end{equation}
 +
</p>
 +
 
 +
<p>
 +
By the same reasoning we used for $k_N$ (eq(\ref{k_N})), we compute $k_P\approx\frac{\log{2}}{11}\mbox{s}^{-1}$, since our plasmid replicates itself every $11$s (reference?). Moreover, we have to consider the dilution of those plasmids through the population, due to its increase. In that purpose, let us suppose for a moment that the plasmids don't replicate any more; we then have $PN=\mbox{cst}$, thus
 +
\begin{equation}
 +
P=\frac{\mbox{cst}}N\quad\Rightarrow \dot P=-\mbox{cst}\frac{\dot N}{N^2}=-\frac{\dot N}NP.
 +
\label{dilution}\end{equation}
 +
</p>
 +
 
 +
<p>
 +
Combining both production (eq (\ref{production})) and dilution (eq(\ref{dilution})) effects, we get the evolution equation for $P$:
 +
\begin{equation}
 +
\dot P=k_PP\left(1-\frac P{P_{max}}\right)-\frac{\dot N}NP.
 +
\label{P30}\end{equation}
 +
</p>
 +
 
 +
<p>
 +
Remark that this equation can be written as follow:
 +
\begin{equation}
 +
\frac d{dt}(NP)=k_PNP\left(1-\frac P{P_{max}}\right),
 +
\label{equNP}\end{equation}
 +
which allows a convenient interpretation: $NP$, the total amount of Pindel plasmids, follows a logistic model but where the saturation is only due to $P$. This seems quite natural, as we will see. The evolution of the amount of plasmids has to be of the form
 +
\begin{equation}
 +
\frac d{dt}(NP)=NP\cdot(b(N,P)-d(N,P))
 +
\end{equation}
 +
in term of a birth rate of new plasmids $b(N,P)$ and a death rate $d(N,P)$. The death rate is <em>a priori</em> constant and even zero in our case: $d(N,P)=d=0$. Regarding the birth rate, it has to diminish when $P$ increases, but is obviously unlinked with the amount of bacteria $N$; the easiest is then to postulate an affine function $b(N,P)=\alpha-\beta P$, so that we find
 +
\begin{equation}
 +
\frac d{dt}(NP)=NP(\alpha-\beta P)
 +
\end{equation}
 +
which is equivalent to (\ref{equNP}). This observation thus justifies our equation for $P$ (eq(\ref{P30})), initially obtained by heuristic reasoning.
 +
</p>
 +
 
 +
<p>
 +
Arabinose activates Pbad (the promotor of the three-gene sequence $i$ on Pindel), in order that those $3$ genes are expressed. Keeping in mind that the expressed proteins naturally deteriorate, the easiest way to modelise the evolution of their quantity ($G_i$) is
 +
\begin{equation}
 +
\dot{G_i}=C_iP-D_iG_i \quad (i=1,2,3)
 +
\label{Gi30}\end{equation}
 +
where $C_i$ is the production rate of the protein $i$ by the Pindel plasmid and $D_i$ the deterioration rate of that same protein. We estimated $C_i\approx\ldots$ and $D_i\approx\ldots$.
 +
</p>
 +
 
 +
<p>
 +
The promotor of flippase is repressed by a thermo-sensible repressor, and, at $30^\circ$C, is only partially activated ($\ldots\%$); in addition, the transcription is hindered by a possible interference with the transcription of the genes $i$. By a computer simulation, we have been able to estimate $p_{simul}$, the probability that the flippase sequence gets entirely transcribed (see section \ref{IntTranscr}). Remark that at $30^\circ$C flippase is entirely active. If we take furthermore the natural deterioration of flippase in account, we can write
 +
\begin{equation}
 +
\dot{F}=C_Fp_{simul}P-D_FF
 +
\label{F30}\end{equation}
 +
where $C_F$ is the production rate of flippase by Pindel (in ideal conditions, at $100\%$ of its activity) and $D_F$ the natural deterioration rate of flippase. We estimated that $C_F\approx\ldots$ et $D_F\approx0.01$.
 +
</p>
 +
 
 +
<p>
 +
We thereby obtain the following system (see eqs (\ref{N30}), (\ref{P30}), (\ref{Gi30}) and (\ref{F30})):
 +
\begin{numcases}{}
 +
\dot{N}=k_NN\left(1-\frac N{N_{max}}\right)\label{N30f}\\
 +
\dot{P}=k_PP\left(1-\frac{P}{P_{max}}\right)-\frac{\dot N}NP\label{P30f}\\
 +
\dot{G_i}=C_iP-D_iG_i \qquad (i=1,2,3)\label{Gi30f}\\
 +
\dot{F}=C_Fp_{simul}P-D_FF\label{F30f}
 +
\end{numcases}
 +
</p>
 +
 
 +
<h2>Solving the equations</h2>
 +
 
 +
<p>
 +
In order to solve the first equation (eq(\ref{N30f})), we pose $M=1/N$; the equation then reads
 +
\begin{equation}
 +
\dot M=-\frac{\dot N}{N^2}=-k_N\left(\frac1N-\frac1{N_{max}}\right)=-k_NM+\frac {k_N}{N_{max}}
 +
\end{equation}
 +
and easily get solved to give
 +
\begin{equation}
 +
M(t)=\frac1{N_{max}}+(\frac1{N_0}-\frac1{N_{max}})e^{-k_Nt}
 +
\end{equation}
 +
thus
 +
\begin{equation}
 +
N(t)=\frac{N_{max}N_0e^{k_Nt}}{N_0e^{k_Nt}+(N_{max}-N_0)}=N_0e^{k_Nt}\frac1{1+\frac{N_0}{N_{max}}\left(e^{k_Nt}-1\right)}\overset{\star}{\approx} N_0e^{k_Nt}
 +
\end{equation}
 +
where the approximation ($\star$) remains valid for short times, that is
 +
\begin{equation}
 +
t\ll\frac1{k_N}\log{(\frac{N_{max}}{N_0}+1)}\approx5271\mbox{s}=1\mbox{h}27\mbox{min}51\mbox{s}.
 +
\end{equation}
 +
</p>
 +
 
 +
<p>
 +
Saturation is reached when $t\approx9000\mbox{s}=2\mbox{h}30\mbox{min}$, as we can see on the following graph (obtained for realistic values of the parameters)
 +
\[\mbox{[insert graphic 1]}\]
 +
</p>
 +
 
 +
<p>
 +
The equation for $P$ (eq(\ref{P30f})) then becomes
 +
\begin{equation}
 +
\dot P=k_PP\left(1-\frac{P}{P_{max}}\right)-k_N\frac{N_{max}-N_0}{N_0e^{k_Nt}+(N_{max}-N_0)}P
 +
\end{equation}
 +
which cannot be solved analytically.  However, we can solve it numerically using <em>Mathematica</em>: for realistic values of the parameters,
 +
\[\mbox{[insert graphic 2]}\]
 +
We observe that $P(t)\approx P_{max}$ as soon as $t\gtrsim50\mbox{s}$.
 +
</p>
 +
 
 +
<p>
 +
The two last equations, for $F$ and $G_i$ (eqs (\ref{F30f}) and (\ref{Gi30f})), can also be solved  via <em>Mathematica</em>: for realistic constants,
 +
\begin{description}
 +
\item{for $F$:}
 +
\[\mbox{[insert graphic 3]}\]
 +
\item{for $G_i$:}
 +
\[\mbox{[insert graphic 4]}\]
 +
\end{description}
 +
</p>
 +
 
 +
<p>
 +
As soon as $t\approx\ldots$, $G_i$ reaches its asymptotic maximum $C_iP_{max}/D_i\approx\ldots$ and $F$ reaches its asymptotic maximum $C_Fp_{simul}P_{max}/D_F\approx\ldots$.
 +
</p>
 +
 
 +
<p>
 +
It is important to point out that here, the solution of our model only presents a small sensitivity to the parameters around the estimated values: a small error on the parameters will only result in a small change in the solution, as we can observe if we vary the values of the parameters a little around their estimation. [mettre Žventuellement un lien vers une page avec tous les fichiers cdf]
 +
</p>
 +
 
 +
</div>
 +
</div>
 +
</div>
 +
 +
<div id="bas">
 +
<div id="basi">
 +
iGEM ULB Brussels Team - <a href="mailto:lvmelder@ulb.ac.be">Contact us</a>
 +
</div>
 +
</div>
 +
 +
</html>

Revision as of 12:08, 21 September 2011

Modelling : Phase at 30°C

Phase at $30^\circ$C on arabinose

\label{Ph30}

Transcriptional interference: computer simulation

\label{IntTranscr}

In this section, we study the interference in the transcription provoked by the simultaneous expression of the gene coding for the flippase (which is performed only for $\ldots\%$ at $30^\circ$C), and of the three genes $i$ for the Red recombinase (which is performed for $100\%$).

\ldots[Jo\&Pierre]

Preparation: electroporation and night culture

We electropore E. coli with Pindel plasmids. Given that the plasmids include a resistance gene to ampiciline, we can see, by testing that resistance, which bacteria actually received a Pindel plasmid. One colony of those bacteria is then cultivated at $30^\circ$C in $10$ml, where it attains saturation (between $2\cdot10^9$ and $5\cdot10^9$ bacteria per ml). The solution is diluted $100$ to $1000$ times, then cultivated again, until we reach an optic density (OD) (at $600$nm) of $0.2$, which corresponds to approximatively $10^8$ bacteria. Those bacteria are then put in touch with arabinose at $30^\circ$C.

Model

Getting the equations

\label{Mod30}

At the initial time ($t=0$), the concentration of bacteria ($N(t)$) is $N_0:=N(0)\approx10^8\mbox{bact}/\mbox{ml}$. It seems natural to use Verhulst's logistic model \begin{equation} \dot N=k_NN\left(1-\frac N{N_{max}}\right) \label{N30} \end{equation} where $N_{max}$ is the maximum concentration of bacteria that is possible in the culture environment and where $k_N$ corresponds to the growth rate one would observe in the limit where the saturation would be inexistent. In our case, the saturation density slightly exceeds $1$ OD (at $600$nm), that is approximatively $N_{max}\approx 2\cdot10^9\mbox{bact}/\mbox{ml}$. On the other hand, since our E. coli ideally duplicate every $20$min, if we are far from the saturation ($N_{max}=\infty$), we obtain \begin{equation} \dot N=k_NN \Rightarrow N_0e^{k_Nt}=N(t)=N_02^{t/20\mbox{\footnotesize{min}}} \quad\Rightarrow k_N\approx \frac{\log{2}}{20\cdot60}\mbox{s}^{-1}. \label{k_N}\end{equation}

At this point, all the bacteria contain Pindel. At $30^\circ$C, RepA101 becomes active and is present in sufficient quantities to allow the plasmid's replication; the evolution of $E_{tot}$ and $E$ thus do not matter. However, we shall note that the amount of plasmids per bacterium cannot exceed a certain number $P_{max}\approx20$ (because the origin of replication of the plasmid is low copy). At initial time, the amount of Pindel plasmids per bacterium is $P_0:=P(0)\approx19$. Again, we naturally postulate a logistic model: \begin{equation} \dot P=k_PP\left(1-\frac{P}{P_{max}}\right). \label{production}\end{equation}

By the same reasoning we used for $k_N$ (eq(\ref{k_N})), we compute $k_P\approx\frac{\log{2}}{11}\mbox{s}^{-1}$, since our plasmid replicates itself every $11$s (reference?). Moreover, we have to consider the dilution of those plasmids through the population, due to its increase. In that purpose, let us suppose for a moment that the plasmids don't replicate any more; we then have $PN=\mbox{cst}$, thus \begin{equation} P=\frac{\mbox{cst}}N\quad\Rightarrow \dot P=-\mbox{cst}\frac{\dot N}{N^2}=-\frac{\dot N}NP. \label{dilution}\end{equation}

Combining both production (eq (\ref{production})) and dilution (eq(\ref{dilution})) effects, we get the evolution equation for $P$: \begin{equation} \dot P=k_PP\left(1-\frac P{P_{max}}\right)-\frac{\dot N}NP. \label{P30}\end{equation}

Remark that this equation can be written as follow: \begin{equation} \frac d{dt}(NP)=k_PNP\left(1-\frac P{P_{max}}\right), \label{equNP}\end{equation} which allows a convenient interpretation: $NP$, the total amount of Pindel plasmids, follows a logistic model but where the saturation is only due to $P$. This seems quite natural, as we will see. The evolution of the amount of plasmids has to be of the form \begin{equation} \frac d{dt}(NP)=NP\cdot(b(N,P)-d(N,P)) \end{equation} in term of a birth rate of new plasmids $b(N,P)$ and a death rate $d(N,P)$. The death rate is a priori constant and even zero in our case: $d(N,P)=d=0$. Regarding the birth rate, it has to diminish when $P$ increases, but is obviously unlinked with the amount of bacteria $N$; the easiest is then to postulate an affine function $b(N,P)=\alpha-\beta P$, so that we find \begin{equation} \frac d{dt}(NP)=NP(\alpha-\beta P) \end{equation} which is equivalent to (\ref{equNP}). This observation thus justifies our equation for $P$ (eq(\ref{P30})), initially obtained by heuristic reasoning.

Arabinose activates Pbad (the promotor of the three-gene sequence $i$ on Pindel), in order that those $3$ genes are expressed. Keeping in mind that the expressed proteins naturally deteriorate, the easiest way to modelise the evolution of their quantity ($G_i$) is \begin{equation} \dot{G_i}=C_iP-D_iG_i \quad (i=1,2,3) \label{Gi30}\end{equation} where $C_i$ is the production rate of the protein $i$ by the Pindel plasmid and $D_i$ the deterioration rate of that same protein. We estimated $C_i\approx\ldots$ and $D_i\approx\ldots$.

The promotor of flippase is repressed by a thermo-sensible repressor, and, at $30^\circ$C, is only partially activated ($\ldots\%$); in addition, the transcription is hindered by a possible interference with the transcription of the genes $i$. By a computer simulation, we have been able to estimate $p_{simul}$, the probability that the flippase sequence gets entirely transcribed (see section \ref{IntTranscr}). Remark that at $30^\circ$C flippase is entirely active. If we take furthermore the natural deterioration of flippase in account, we can write \begin{equation} \dot{F}=C_Fp_{simul}P-D_FF \label{F30}\end{equation} where $C_F$ is the production rate of flippase by Pindel (in ideal conditions, at $100\%$ of its activity) and $D_F$ the natural deterioration rate of flippase. We estimated that $C_F\approx\ldots$ et $D_F\approx0.01$.

We thereby obtain the following system (see eqs (\ref{N30}), (\ref{P30}), (\ref{Gi30}) and (\ref{F30})): \begin{numcases}{} \dot{N}=k_NN\left(1-\frac N{N_{max}}\right)\label{N30f}\\ \dot{P}=k_PP\left(1-\frac{P}{P_{max}}\right)-\frac{\dot N}NP\label{P30f}\\ \dot{G_i}=C_iP-D_iG_i \qquad (i=1,2,3)\label{Gi30f}\\ \dot{F}=C_Fp_{simul}P-D_FF\label{F30f} \end{numcases}

Solving the equations

In order to solve the first equation (eq(\ref{N30f})), we pose $M=1/N$; the equation then reads \begin{equation} \dot M=-\frac{\dot N}{N^2}=-k_N\left(\frac1N-\frac1{N_{max}}\right)=-k_NM+\frac {k_N}{N_{max}} \end{equation} and easily get solved to give \begin{equation} M(t)=\frac1{N_{max}}+(\frac1{N_0}-\frac1{N_{max}})e^{-k_Nt} \end{equation} thus \begin{equation} N(t)=\frac{N_{max}N_0e^{k_Nt}}{N_0e^{k_Nt}+(N_{max}-N_0)}=N_0e^{k_Nt}\frac1{1+\frac{N_0}{N_{max}}\left(e^{k_Nt}-1\right)}\overset{\star}{\approx} N_0e^{k_Nt} \end{equation} where the approximation ($\star$) remains valid for short times, that is \begin{equation} t\ll\frac1{k_N}\log{(\frac{N_{max}}{N_0}+1)}\approx5271\mbox{s}=1\mbox{h}27\mbox{min}51\mbox{s}. \end{equation}

Saturation is reached when $t\approx9000\mbox{s}=2\mbox{h}30\mbox{min}$, as we can see on the following graph (obtained for realistic values of the parameters) \[\mbox{[insert graphic 1]}\]

The equation for $P$ (eq(\ref{P30f})) then becomes \begin{equation} \dot P=k_PP\left(1-\frac{P}{P_{max}}\right)-k_N\frac{N_{max}-N_0}{N_0e^{k_Nt}+(N_{max}-N_0)}P \end{equation} which cannot be solved analytically. However, we can solve it numerically using Mathematica: for realistic values of the parameters, \[\mbox{[insert graphic 2]}\] We observe that $P(t)\approx P_{max}$ as soon as $t\gtrsim50\mbox{s}$.

The two last equations, for $F$ and $G_i$ (eqs (\ref{F30f}) and (\ref{Gi30f})), can also be solved via Mathematica: for realistic constants, \begin{description} \item{for $F$:} \[\mbox{[insert graphic 3]}\] \item{for $G_i$:} \[\mbox{[insert graphic 4]}\] \end{description}

As soon as $t\approx\ldots$, $G_i$ reaches its asymptotic maximum $C_iP_{max}/D_i\approx\ldots$ and $F$ reaches its asymptotic maximum $C_Fp_{simul}P_{max}/D_F\approx\ldots$.

It is important to point out that here, the solution of our model only presents a small sensitivity to the parameters around the estimated values: a small error on the parameters will only result in a small change in the solution, as we can observe if we vary the values of the parameters a little around their estimation. [mettre Žventuellement un lien vers une page avec tous les fichiers cdf]

iGEM ULB Brussels Team - Contact us