Team:Imperial College London/Project Auxin Testing
From 2011.igem.org
Mingatipat (Talk | contribs) |
|||
Line 8: | Line 8: | ||
<p>How much auxin will we be producing? More importantly, has the module actually worked?! This chapter will look into the methods that we have decided to use in order to measure the amount of auxin in a solution. We have decided to use qualitative methods such as the Salkowski reagent (changes colour which is always good) as well as quantitative methods such as HPLC and GC-MS for more accurate results. We are also doing experiments on Arabidopsis root length with synthetic auxin.</p> | <p>How much auxin will we be producing? More importantly, has the module actually worked?! This chapter will look into the methods that we have decided to use in order to measure the amount of auxin in a solution. We have decided to use qualitative methods such as the Salkowski reagent (changes colour which is always good) as well as quantitative methods such as HPLC and GC-MS for more accurate results. We are also doing experiments on Arabidopsis root length with synthetic auxin.</p> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
<h2>Implementation</h2> | <h2>Implementation</h2> |
Revision as of 18:45, 15 September 2011
Module 2: Auxin Xpress
Auxin, or Indole 3-acetic acid (IAA), is a plant growth hormone which is produced by several soil bacteria. We have taken the genes encoding the IAA-producing pathway from Pseudomonas savastanoi and expressed them in Escherichia coli. Following chemotaxis towards the roots and uptake by the Phyto Route module, IAA expression will promote root growth with the aim of improving soil stability.
Testing
How much auxin will we be producing? More importantly, has the module actually worked?! This chapter will look into the methods that we have decided to use in order to measure the amount of auxin in a solution. We have decided to use qualitative methods such as the Salkowski reagent (changes colour which is always good) as well as quantitative methods such as HPLC and GC-MS for more accurate results. We are also doing experiments on Arabidopsis root length with synthetic auxin.
Implementation
Indole-3 acetic acid (IAA) is one of the most well studied phytohormones and is also known more commonly under the name Auxin. IAA is known as a key player in the regulation of plant growth and is also a known morphogen implicated in a vast array of processes ranging from embryo patterning to isodiametric expansion (fruit growth).
However, the topic of auxin producing soil bacteria in the rhizosphere has been given little attention so far. We believe that plant-microbe interactions mediated through IAA could be tapped into to modulate the plasticity of the root architecture. In this module, we will be attempting to express Tryptophan monooxygenase (IaaM) and Idoleacetimide hydrolase (IaaH) in Escherichia coli. We are aware that E. coli would not be a suitable chassis for field work and we have taken this into account when we made our DNA sequences.
The effect on plants
To observe how indole 3-acetic acid influences plants, we will be working with the plant model organism Arabidopsis thaliana. Arabidopsis is well-established for research into plant biology and researchers have established lines that respond to auxin exposure by expressing reporter genes, which are particularly useful for our project.
We will use DR5:GFP and DR5:3XVENUS plants that respond to auxin by expression of GFP and YFP, respectively, to look at the plant response to synthetic auxin and later bacteria-secreted auxin. The DR5 plant lines respond to auxin exposure by expressing GFP and YFP, respectively. This will allow us to monitor how much auxin is taken up and which cells respond to it. We will be using confocal microscopy to evaluate the relative strength of fluorescence expressed by the plant. This will act as an indirect reporter on the auxin concentration supplied as it relies on the plant expressing fluorescence in response to stimulation by the hormone.
Initially, we will be supplying the plants with synthetic auxin and observe the differences in growth and (root) morphology due to differential concentrations of the hormone. In later stages of the project, this will be followed by exposing the plants to E. coli cells expressing auxin.
References:
[1] Stijn Spaepen, Jos Vanderleyden, and Roseline Remans, “Indole-3-acetic acid in microbial and microorganism-plant signaling,” FEMS Microbiology Reviews 31, no. 4 (July 2007): 425-448.
Chapter 3: effect of auxin on plants
We are not only interested in constructing the auxin-producing pathway in our bacteria but we also want to investigate what effect the auxin has on plants to verify our assumptions about indole 3-acetic acid's effects. This will help us with the human practices aspect of our project and it will also provide a good assay for the functionality of auxin-secreting bacteria.
Root growth at different auxin concentrations. Tuesday, 9 August 2011
To look at the effect of auxin on plants, we supplied differing indole 3-acetic acid concentrations to Arabidopsis seedlings in liquid culture.
Si modelled the concentration of auxin secreted by our bacteria to be 10mM. However, according to Joseph et al (1995), increasing exogenous IAA concentrations from 0 - 0.1 nM increases root growth from 0 - 20%. From 0.1 nM to 10microM, the root length and decreases sequentially, while fibrosity increases. The plant dies at concentrations over 10 microM. However ___ state that the optimal auxin concentration lies in between 0.5 microM - 20 microM. Accordingly, we used concentrations starting from 10mM to 0.1nM to test the effect of different auxin concentrations on the length of the roots and their branching. We made the auxin concentrations by serial dilution and added 10ml of concentrated auxin solution to 100ml of half-MS media each. Twenty-five seeds were added to each flask. The seeds were incubated at 23°C and wrapped in aluminium foil to allow the plants to germinate in the dark. They will be allowed to grow in the light in 3 days' time. This follows a protocol described by King et al. (1995). The results are stated in Friday 19th of August and Monday 22th of August
The pictures below depict the effect of different IAA concentrations from 0.1 nM, 10nM, 1 micM, and 0.1 mM on root growth. (left) The top panel shows the effects of root growth by 0.1 nM IAA and bottom panel for 10 nM (middle) The top panel shows the effects of root growth by 1 microM IAA and bottom panel for 0.1 mM (right)
The table below summarizes the root length on different IAA concentrations, 0.1 nM, 10nM, 1 micM, and 0.1 mM from top to bottom
Root growth at different positions where Auxin is applied Wednesday, 10 August 2011
Looking at the effect of auxin on the roots also involves observing its effect on phytogels. On these gels, individual seedlings grow horizontally into a gel containing plant nutrients. These gels enable us to supply the plant with auxin at set distances from the seedling itself. Observing these effects is especially in case our bacteria do not get taken up into roots in nature, which has yet to be investigated. We are using DR:3VENUS seeds. These germinate into plants whose roots respond to auxin uptake by expressing YFP. We hope to be able to get an estimate of the effect of auxin by comparing intensities of fluorescence across plants supplied with different concentrations of auxin.
Si corrected the estimated auxin secretion of our bacteria to 0.0001 to 0.01 mM. Accordingly, we set up the auxin concentration gradient experiment with 0.0001, 0.001 and 0.01 mM of IAA. We injected a small volume of IAA dissolved in 70% ethanol at set distances from seeds, which were subsequently put onto the gel. Five replicates were set up for each concentration. On each plate, the seed seeds are sown at distances of 2,4,6,8, and 10 cm from the point where IAA is applied. Roots grow perpendicular to the line on which IAA and seeds are applied. The plates are kept in low light for 3 days in order to prevent photooxidation of auxin and also in 4 C to simulate the winter hibernation. The plates are later put in light for another 6 days to see root growth.
After 6 days, the phytogel plates are imaged with photoradiography. The root length data collected are analyzed using image J program by comparing with the reference (10 ml syringe). The data collected is plotted to see the optimal root length for each IAA concentration.
The table showing different root length measured in the phytogel applying 0.01 mM, 0.001 mM, 0.0001 mM and control at 2 cm, 4 cm, 6 cm, 8 cm, 10 cm away from the seeds
The examples of phytogel plates where IAA is applied on the left side (left) and the graph of the average root length at 0.01 mM, 0.001 mM, 0.0001 mM and control (0M) at 2 cm, 4 cm, 6 cm, 8 cm, 10 cm away from the seeds (right)
The split root experiment (Friday 12 and Monday 15 August 2011)
To visually compare the difference of the root growth between the applying and non applying of IAA in the same plant, we set up a split root experiment (which had been recommended to us by Dr Alex Milcu). This experiment extends beyond the scope of normal controls as the same plant is subjected to two different treatments. We supplied the following concentrations of IAA to one half of the roots: 0 microM (control), 0.1 microM, 1 microM and 10 microM, while the other half is grown in phytogel containing no IAA. 3 replicates were set up for each concentration. 7-day old seedling of A thaliana DR:3VENUS were used for this set up. This strain responds to auxin by expressing YFP. The plates are sealed and kept in the incubating room for 2 weeks in order to observe the length of the grown root.
After 2 weeks, the phytogel plates are imaged with photoradiography. The maximal root length data collected are analyzed using image J program by comparing with the reference (10 ml syringe). The maximum root length is plotted for each IAA concentration.
Below are remaining split root plates which were not infected by the fungus. The split plate represent the control half (on the right side of the plate) and a half where different concentrations of IAA are applied which are 10 microM (top left), 1 microM (top right), 0.1 microM (bottom left) and 0.1 nM (bottom right)
The length of the roots analysed using ImageJ are written on the table, which could be used to calculated the ratio between the IAA applied samples and the controls.
The ratio at each concentration is plotted into a graph below
Friday, 19 August 2011
We imaged the plants that had been incubated with differing concentrations of IAA using confocal microscopy. Plants incubated with 0.1mM of IAA showed strongly enhanced lateral root growth but also stunted growth.
A Z stack through an Arabidopsis root tip incubated with 0.1mM indole 2-acetic acid.
This did not occur at lower concentrations. However, fluorescence was still clearly visible:
Root of A. thaliana seedling incubated with 1uM indole 3-acetic acid.
At even lower concentrations, fluorescence was much weaker:
Incubated at 0.01nM.
Effect of auxin concentrations results Monday, 22 August 2011
The results shows that from low (0.1nM) to high concentrations (0.1mM)the root legth and the number of the leaves decrease seqeuntially and the plants all die at 10mM. This is an important information for the modelling team since auxin only operates well at liquid concentrations less than 0.1 nM. To find the optimal concentrations of auxin for maximal root growth and splitting. We extend the contrations from 0.1 nM lower down from 10 pM, 1 pM, 0.1 pM and 0.01 pM. Hopefully we could produce the bell shape curve graph for both the root's length and its fibrousity
Effect of auxin concentrations in phytogel Tuesday, 23 August 2011
In order to modelling the effect of auxin concentrations on Arabidopsis and build the macros on lateral root initiation and elongation, root length should be measured day by day. This could not be done in liquid media since taken the plant out of liquid media makes the plant prone to fungal contamination. Also the resources we have, e.g. number of shakers, amounts of Venus Arabidopsis seeds are not enough to build up repeats to measure root length everyday. Therefore we decide to grow Arabidopsis in phytogel which is less reliable than the liquid media
Soil erosion experiment Thursday, 25 August 2011
In order to see which root architecture, the length and the dispersion, is the best to hold up the soil to prevent soil erosion and retain the moisture inside the soil. We then vary 8 concentrations from 0.01 pM, 0.1 pM, 1 pM, 10 pM, 0.1 nM, 10nM, 0.001mM, and 0.1mM as the same as the effect of different auxin concentrations experiment. These different auxin concentrations allow the roots to show different architectures. The experiments are planned up as shown in the diagrams below.
- The material for making the slope is the 20 cm x 10 cm pots placing on top of the 30 degree slope.
- The soil chosen is called M2 which composes of organic compost without any gravel to eliminate the error from different mixtures which contributes to different soil contents. The soil immitates normal
- The pressure of water is kept constant by the adaptable shower head which immitates the average speed of rainfall (9.8 m/s)
The experiment is set up where 18 (3 columns at 10 cm side x 6 rows on 20 cm side) arabidopsis are seeded on the pots which represents each concentration. At each concentration, the experiment is repeated 3 times. These altogether with 2 controls where no auxin is watered in the first one and no Arabidopsis is seeded in the second one, result in 30 pots in total. Estimately 12.5 kg of soil (1/4 of 50kg M2) is used for the experiment. The soil is pretreated with 2 litre of 1mM fungicide solution and left dryout for 1 day. It is then seperated to approximately 400g on each pot and is watered each with 25ml of water to moist up the soil conditions for Arabidopsis seeding. A small hole is digged onto each seeding place to fix the position of the seeds. Arabidopsis is seeded with the pattern already described. For the first 3 days, the seeds are watered everyday at 4 pm to promote the growth and the watering is decreased to once in a 2 days afterwards. Each pot is watered with 25 ml of auxin concentrations mentioned above.
The data on the number of plants grow with less or equal to 2 leaves (shown in black) and ones with more than 2 leaves (shown in red) watered with different IAA concentrations are tabulated below.
After the plants have been grown for 3 and a half week. The plant is watered with prepared concentrations. Then, after 10 minutes 10 cm3 of soil at a region between 4 plant roots is collected for a the wet mass weight. The soil is then incubated to get the dry mass. The different between the wet and the dry mass is the water hold up in the soil. The plants are left 2 days with no watering and the same procedure to measure water retention is repeated. The least differences from water hold up between 10 minutes after watering and 2 days after, the more water retention the soil is.
To see how rooting could prevent soil erosion, the experiment is set up as picture below, where the soil basket is cut opened at one end.
The eroded soil collected from the basin is incubated to measure the dry mass. The higher the dry mass collected, the more soil is eroded.