Team:Tec-Monterrey/projectdescription
From 2011.igem.org
(Difference between revisions)
Line 620: | Line 620: | ||
<center><img src="https://static.igem.org/mediawiki/2011/a/a1/Introimg.png" alt="" name="" width="200" height="50" id="tgo"></center> | <center><img src="https://static.igem.org/mediawiki/2011/a/a1/Introimg.png" alt="" name="" width="200" height="50" id="tgo"></center> | ||
<br> | <br> | ||
- | Cell surface display is a technique to display proteins on the surface of bacteria, fungi, or mammalian cells by fusing them to surface anchoring motifs. This technique has a wide range of biotechnological and industrial applications, including development of vaccines, peptide and antibody libraries, bioremediation, whole-cell-biocatalysis, and whole-cell-biosensors. When protein is expressed in the outer membrane of E. coli the cell envelope acts as a matrix. It is achievable thanks to several systems as outer membrane porins, lipoproteins, GPI-anchored-proteins, fimbriae, and autotransporters. (Jana S & Deb JK, 2005; Lee SH <i>et al</i>., 2004) Displaying proteins on the cell surface also makes preparing or purifying the protein unnecessary in many instances. Whole cells displaying the molecule of interest can be used in reactions or analytical assays and then can be simply removed by centrifugation. (Joachim J & Meyer TF, 2007) | + | Cell surface display is a technique to display proteins on the surface of bacteria, fungi, or mammalian cells by fusing them to surface anchoring motifs. This technique has a wide range of biotechnological and industrial applications, including development of vaccines, peptide and antibody libraries, bioremediation, whole-cell-biocatalysis, and whole-cell-biosensors. When protein is expressed in the outer membrane of <i>E. coli</i> the cell envelope acts as a matrix. It is achievable thanks to several systems as outer membrane porins, lipoproteins, GPI-anchored-proteins, fimbriae, and autotransporters. (Jana S & Deb JK, 2005; Lee SH <i>et al</i>., 2004) Displaying proteins on the cell surface also makes preparing or purifying the protein unnecessary in many instances. Whole cells displaying the molecule of interest can be used in reactions or analytical assays and then can be simply removed by centrifugation. (Joachim J & Meyer TF, 2007) |
<br> | <br> | ||
<br> | <br> | ||
Line 626: | Line 626: | ||
<br> | <br> | ||
<br> | <br> | ||
- | Inverted sugar contains fructose and glucose in | + | Inverted sugar contains fructose and glucose in equal proportions. This product is greater in demand than pure glucose as a food and drink sweetener. The conventional method of manufacturing inverted sugar involves acid hydrolysis of sucrose. However, such reaction has a low conversion efficiency and high-energy consumption. Our new genetic construct will be able to immobilize invertase by cell surface display technique fusing them to fragments of ompA and estA. This system will be capable to transform sucrose into fructose by an enzymatic method without destroying the bacteria; thus reducing the amount of unit operations required to purify only the enzyme and cutting production costs. At the same time, we will immobilize cellulase with the same strategy to take advantage of cellulose residues from the sugarcane process, making the device sustainable. |
<br> | <br> |