Team:Missouri Miners/Project
From 2011.igem.org
(→Abstract) |
(→Project Details) |
||
Line 30: | Line 30: | ||
- | + | === Part 1=== | |
- | === Part | + | As a standard of iGEM, E.coli will be used as the bacterium for this research. We will incorporate the eYFP, RBS, and Omp-R genes into the DNA of the E.coli in the form of a plasmid. The plasmid will consist of two main parts. The first is an iGEM part: a glucose concentration activated promoter gene. The second is a DNA sequence which codes for a yellow florescence protein (eYFP). The promoter will regulate the expression of the eYFP. Restriction enzymes will be used to cut the circular E.coli DNA at specific points. Because eYFP has more base pairs than RBS (ribosome binding site) and Omp-R, we will cut the eYFP genes completely out so that eYFP and RBS can be combined with eYFP as the insert and RBS as the vector. After these have been ligated together, the new eYFP/RBS plasmid will be cut and reassembled with eYFP/RBS as the insert and Omp-R as the vector. |
- | + | ||
Line 42: | Line 41: | ||
- | === Part | + | === Part 2 === |
- | + | - | |
- | + | ||
- | + | ||
== Results == | == Results == |
Revision as of 20:21, 21 July 2011
Home | Team | Official Team Profile | Project | Parts Submitted to the Registry | Modeling | Notebook | Safety | Attributions |
---|
Contents |
Abstract
In the bodies of people with type one diabetes, the ability to both recognize and respond to glucose concentrations in the blood has been compromised. As a result, glucose accumulates to dangerous levels in the blood. High blood glucose concentrations can cause irreversible damage to several critical organs, impairing the functionality of those organs. With accessible parts from the iGEM registry we will attempt to integrate a glucose controlled promoter gene linked to a green fluorescence production gene and an insulin production gene. We will then determine the concentrations of glucose to which the promoter responds. Once the concentration is known, we will attempt to mutate the glucose controlled promoter gene so that it will respond to, and be activated by, concentrations of glucose closer to those of the average human (roughly 5mM).
Project Details
Part 1
As a standard of iGEM, E.coli will be used as the bacterium for this research. We will incorporate the eYFP, RBS, and Omp-R genes into the DNA of the E.coli in the form of a plasmid. The plasmid will consist of two main parts. The first is an iGEM part: a glucose concentration activated promoter gene. The second is a DNA sequence which codes for a yellow florescence protein (eYFP). The promoter will regulate the expression of the eYFP. Restriction enzymes will be used to cut the circular E.coli DNA at specific points. Because eYFP has more base pairs than RBS (ribosome binding site) and Omp-R, we will cut the eYFP genes completely out so that eYFP and RBS can be combined with eYFP as the insert and RBS as the vector. After these have been ligated together, the new eYFP/RBS plasmid will be cut and reassembled with eYFP/RBS as the insert and Omp-R as the vector.
The Experiments
Part 2
-