Team:Tsinghua

From 2011.igem.org

(Difference between revisions)
Line 1: Line 1:
__NOTOC__
__NOTOC__
-
 
+
{{:Team:Tsinghua/header}}<html>
-
 
+
-
<html>
+
-
 
+
-
 
+
-
 
+
<body id="bd_home">
<body id="bd_home">

Revision as of 07:58, 12 March 2011

Main Page
Until Jamboree

days

hours

minutes

seconds

Follow us on


Visitor Locations

Locations of visitors to this page

Join the conversation

Team

We're from Tsinghua University.

Since China opened up to the world in 1978, Tsinghua University has developed at a breathtaking pace into a comprehensive research university. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University has now over 25,900 students, including 13,100 undergraduates and 12,800 graduate students. As one of China’s most renowned universities, Tsinghua has become an important institution for fostering talent and scientific research.

With the motto of “Self-Discipline and Social Commitment” and the spirit of “Actions Speak Louder than Words”, Tsinghua University is dedicated to the well-being of Chinese society and to world development.

More...

Project

Monoclonal antibodies (mAb or moAb) are monospecific antibodies that are the same, made by identical immune cells that are all clones of a unique parent cell. When stimulated by almost any type of antigen, the immune system can create the specific antibody. This lays the foundation for monoclonal artificial antibodies.

The current most well-developed technique in Artificial Monoclonal Antibody is the famous Hybridoma Cell Production. Monoclonal antibodies are typically made by fusing myeloma cells with the spleen cells from a mouse that has been immunized with the desired antigen. The success rate is so low that a selective medium in which only fused cells can grow is used. This mixture of cells is then diluted and clones are grown from single parent cells on microtitre wells. The antibodies secreted by the different clones are then assayed for their ability to bind to the antigen. The most productive and stable clone is then selected for future use.

More...

Parts

We built a host of parts during our project. The idea is that after every small step, we store our sequence as a biobrick part.

This strategy marks our progress and facilitates future use of these sequences.

More...

Experiment

Our experiments are carefully recorded on a daily basis. Through the series of records, we can see our joys and sorrows.

Besides, we made the records for the purpose that our experiments can be repeated one day by someone else, thus contributing to the exploration of the unknown.

More...

Support

Our project is supported by School of Life Sciences, Department of Physics, Academy of Arts and Designs in Tsinghua.

Besides, we cited from a series of references.

More...

Human Practice

We put safety as our first priority and made a detailed safety brochure.

We also devoted efforts to publicize synthetic biology and to cooperate with other teams. The teams in China held a summer meetup to discuss our progress and share our resources. We also held a lecture introducing iGEM and our project in Tsinghua Univeristy. To get further support, we sought the cooperation of iGEM Team at Macquire, Australia.

More...