Team:Tsinghua-A/Modeling/P3A

From 2011.igem.org

(Difference between revisions)
Line 2: Line 2:
<html xmlns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
-
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
+
<style>
-
<title>JavaScript Slideshow - TinySlideshow</title>
+
-
<link rel="stylesheet" href="http://bioinfo.au.tsinghua.edu.cn/member/IGEM/thu_style.css" />
+
-
<style type="text/css">
+
-
 
+
body {
body {
margin: 0;
margin: 0;
padding: 0;
padding: 0;
background: #F7F7F7 url("https://static.igem.org/mediawiki/2011/2/27/Thua-back1.jpg");
background: #F7F7F7 url("https://static.igem.org/mediawiki/2011/2/27/Thua-back1.jpg");
-
background-repeat: no-repeat;  
+
background-repeat: no-repeat;  
-
background-attachment: fixed;
+
background-attachment: fixed;
font-family: Arial, Helvetica, sans-serif;
font-family: Arial, Helvetica, sans-serif;
font-size: 12px;
font-size: 12px;
color: #787878;
color: #787878;
}
}
-
div.slider{
+
head{
-
float:right;
+
margin:0;
 +
padding:0;
 +
//background: #F7F7F7 url("https://static.igem.org/mediawiki/2011/e/e2/Thua-back.jpg") repeat-x left top;
}
}
-
div.nav
+
p.cite{
-
{
+
line-height:2;
-
width:180px;
+
font-family:"Times New Roman",Georgia,Serif;
-
height:188px;
+
font-weight:bold;
-
float:left;
+
color:#000000;
-
border-style: none;  
+
font-size:90%
-
border-width: 50px;
+
-
margin : 0px 0px 0px 0px;
+
-
}
+
-
div.back{
+
-
width:750px;
+
-
height:175px;
+
-
float:right;
+
-
border-style: none;
+
-
border-width: 50px;
+
-
margin : 0px 0px 0px 0px;
+
}
}
div.imgbox{
div.imgbox{
Line 107: Line 95:
font-size:110%
font-size:110%
}
}
-
p.cite{
+
h2{
line-height:2;
line-height:2;
-
font-family:"Times New Roman",Georgia,Serif;
 
font-weight:bold;
font-weight:bold;
-
color:#000000;
 
-
font-size:90%
 
-
}
 
-
h2{
 
-
line-height:2;
 
font-family:"Times New Roman",Georgia,Serif;
font-family:"Times New Roman",Georgia,Serif;
-
color:#005555;
+
color:#0431B4;
-
font-size:100%;
+
font-size:175%;
-
}
+
-
head{
+
-
margin:0;
+
-
padding:0;
+
-
//background: #F7F7F7 url("https://static.igem.org/mediawiki/2011/e/e2/Thua-back.jpg") repeat-x left top;
+
}
}
Line 133: Line 110:
margin: 0 auto;
margin: 0 auto;
padding: 0;
padding: 0;
-
background: #1c1c1c;
+
background: #1c1c1c;
}
}
Line 177: Line 154:
</style>
</style>
 +
<meta name="keywords" content="" />
 +
<meta name="description" content="" />
 +
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
 +
<title>Republic  by Free CSS Templates</title>
</head>
</head>
<body>
<body>
 +
<div id="wrapper">
 +
  <div id="header">
-
<p STYLE="text-indent:0em" align="CENTER"><img src="https://static.igem.org/mediawiki/2011/f/f9/THU_banner_mod.jpg" alt="" width="960"/></p>
+
 
 +
<p align="left"><img src="https://static.igem.org/mediawiki/2011/f/f9/THU_banner_mod.jpg" alt="" width="960"/></p>
 +
 +
</div>
 +
<!-- end #header -->
<div id="menu">
<div id="menu">
<ul>
<ul>
<li><a href="https://2011.igem.org/Team:Tsinghua-A/Team">Team</a></li>
<li><a href="https://2011.igem.org/Team:Tsinghua-A/Team">Team</a></li>
<li><a href="https://2011.igem.org/Team:Tsinghua-A/Project">Project</a></li>
<li><a href="https://2011.igem.org/Team:Tsinghua-A/Project">Project</a></li>
-
<li><a href="https://2011.igem.org/Team:Tsinghua-A/Safety">Safety</a></li>
+
<li><a href="https://2011.igem.org/Team:Tsinghua-A/safety">Safety</a></li>
<li class="current_page_item"><a href="https://2011.igem.org/Team:Tsinghua-A/Modeling">Modeling</a></li>
<li class="current_page_item"><a href="https://2011.igem.org/Team:Tsinghua-A/Modeling">Modeling</a></li>
<li ><a href="https://2011.igem.org/Team:Tsinghua-A/Parts">Parts</a></li>
<li ><a href="https://2011.igem.org/Team:Tsinghua-A/Parts">Parts</a></li>
Line 192: Line 179:
</ul>
</ul>
</div>
</div>
-
<br>
+
<p>&nbsp;</p>
<!-- end #menu -->
<!-- end #menu -->
-
 
-
 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HTML>
<HEAD>
<HEAD>
<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=gb2312">
<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=gb2312">
-
<TITLE></TITLE>
 
-
<STYLE TYPE="text/css">
 
-
<!--
 
-
@page { margin: 2cm }
 
-
P { margin-bottom: 0.21cm }
 
-
A:link { so-language: zxx }
 
-
-->
 
-
</STYLE>
 
</HEAD>
</HEAD>
<BODY LANG="zh-CN" DIR="LTR">
<BODY LANG="zh-CN" DIR="LTR">
 +
<P><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling"><FONT FACE="Arial, sans-serif"><SPAN LANG="en-US"><FONT SIZE=5 STYLE="font-size: 20pt">Modeling</A>::</FONT><FONT COLOR="#0099ff"><FONT SIZE=5 STYLE="font-size: 20pt">Dimensionless Model</FONT></FONT></SPAN></FONT></P>
-
<div style="position=absolute;left=10px;top=50px;display:inline"><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling"><img src="https://static.igem.org/mediawiki/2011/b/b7/ThuA_A2.png" width="150px" height="100px"></div>
 
-
<div style="position=absolute;left=170px;top=50px;display:inline"><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P1A"><img src="https://static.igem.org/mediawiki/2011/0/0d/ThuA_B1.png" width="110px" height="100px"></div>
 
-
<div style="position=absolute;left=290px;top=50px;display:inline"><"><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P2A"><img src="https://static.igem.org/mediawiki/2011/b/b6/ThuA_C1.png" width="110px" height="60px"></div>
 
-
<div style="position=absolute;left=410px;top=50px;display:inline"><"><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P3A"><img src="https://static.igem.org/mediawiki/2011/6/6e/ThuA_D1.png" width="110px" height="60px"></div>
 
-
<div style="position=absolute;left=530px;top=50px;display:inline"><"><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P4"><img src="https://static.igem.org/mediawiki/2011/6/6a/ThuA_E1.png" width="110px" height="120px"></div>
 
-
<div class="slider">
 
-
<p><IMG SRC="https://static.igem.org/mediawiki/2011/1/13/ModelBack.jpg" ALIGN=bottom WIDTH=750 HEIGHT=175 BORDER=0 ISMAP></div>
 
-
<div class="nav">
 
<table id="toc" class="toc">
<table id="toc" class="toc">
<tr>
<tr>
Line 226: Line 196:
</div>
</div>
<ul>
<ul>
-
<li class="toclevel-1 tocsection-1"><a href="#Introduction"><span class="tocnumber">1</span> <span class="toctext">Introduction to Model</span></a></li>
+
<li class="toclevel-1 tocsection-1"><a href="#Dimensionless process"><span class="tocnumber">1</span> <span class="toctext">Dimensionless process</span></a></li>
-
<li class="toclevel-1 tocsection-2"><a href="#Original Full Model"><span class="tocnumber">2</span> <span class="toctext">Original Full Model</span></a></li>
+
<li class="toclevel-1 tocsection-2"><a href="#Parameters"><span class="tocnumber">2</span> <span class="toctext">Parameters</span></a></li>
-
<li class="toclevel-1 tocsection-3"><a href="#Simplified DDE Model"><span class="tocnumber">3</span> <span class="toctext">Simplified DDE Model</span></a></li>
+
<li class="toclevel-1 tocsection-3"><a href="#Results"><span class="tocnumber">3</span> <span class="toctext">Results</span></a>
-
<li class="toclevel-1 tocsection-4"><a href="#Dimensionless Model"><span class="tocnumber">4</span> <span class="toctext">Dimensionless Model</span></a></li>
+
<ul>
-
<li class="toclevel-1 tocsection-5"><a href="#Quorum Sensing"><span class="tocnumber">5</span> <span class="toctext">Quorum Sensing Effect</span></a></li>
+
<li class="toclevel-2 tocsection-1"><a href="#Sensitivity analysis"><span class="tocnumber">3.1</span> <span class="toctext">Sensitivity analysis</span></a></li>
-
<li class="toclevel-1 tocsection-6"><a href="#References"><span class="tocnumber">6</span> <span class="toctext">References</span></a></li>
+
<li class="toclevel-2 tocsection-2"><a href="#Stability analysis"><span class="tocnumber">3.2</span> <span class="toctext">Stability analysis</span></a></li>
 +
<li class="toclevel-2 tocsection-3"><a href="#Feedback analysis"><span class="tocnumber">3.3</span> <span class="toctext">Feedback analysis</span></a></li>
 +
</ul>
 +
</li>
</ul>
</ul>
</td>
</td>
</tr>
</tr>
</table>
</table>
-
</div>
 
<br>
<br>
-
<div class="slider">
 
-
<p><IMG SRC="https://static.igem.org/mediawiki/2011/2/2b/000.png" NAME="graph1" ALIGN=bottom WIDTH=20 HEIGHT=20 BORDER=0 ISMAP><A HREF="https://static.igem.org/mediawiki/2011/9/9a/Modeling_Wiki.pdf"><U><I>Download the full text </I></U></A><IMG SRC="https://static.igem.org/mediawiki/2011/0/08/Thu_matlab.png" NAME="graph2" ALIGN=BOTTOM WIDTH=20 HEIGHT=20 BORDER=0 ISMAP><A HREF="https://static.igem.org/mediawiki/2011/c/c6/Thu_A_Matlab_Code.zip"><U><I>Download the source code package(Matlab)</I></U></A></P></div>
 
-
<h1 id="Introduction">Introduction to Model</h1><hr width="100%" size=2 color=gray>
 
-
<div class="imgbox">
+
<h1 id="Dimensionless process">Dimensionless process</h1><hr width="100%" size=2 color=gray>
-
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/0/03/001.png" width = "430px" height="148px"/>
+
<p>In order to make a further analysis on stability of the system, sensitivity of parameters,
-
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/b/b0/002.png" width = "430px" height="148px" />
+
feedback factors-we manipulate all the arguments and parameters to make them dimensionless.  
-
<p class="cite">Designed gene circuit in cell A and cell B</p>
+
  Analysis of this part is crucial since parameters in vivo experiment may be different and
-
</div>
+
  even at odds with modeling ones but a proper dimensionless can reveal the mathematical essence  
-
 
+
of our model.</p>
-
<p>In our project, we designed a quorum-sensing oscillator which consists of two types of cells. The expression of the reporter genes (GFP of one cell type and GFP of another) of the cells of the same type can fluctuate synchronously and certain designs were made to adjust the phase and the period of oscillation. To understand the property of our system, we built a mathematical model based on ODEs (Ordinary Differential Equations) and DDEs (Delayed Differential Equations) to model and characterize this system. The simulation results helped us to deepen into further characteristics of the system.
+
<p> Considering the Hill equation in the simplification DDEs, A1<sub>c1</sub> and K<sub>M1</sub><sub>1</sub> should be the same order of magnitude, thus K<sub>M1</sub>/ρ<sub>1</sub> is a well measurement of quantities of A1<sub>c1</sub>. We have:</p>
-
</p>
+
<p align="LEFT" style="text-indent:1.2em"><img src="https://static.igem.org/mediawiki/2011/b/be/Part3-1.png" width="705px" height="1258px"></p>
-
 
+
<h1 id="Parameters">Parameters</h1><hr width="100%" size=2 color=gray>
-
<br><br>
+
<p>Parameters in equations are listed below.</p>
-
<div class="slider">
+
<p align="CENTER" style="text-indent:0em"><img src="https://static.igem.org/mediawiki/2011/2/22/Part3-2.png" width="753px" height="355px"></p>
-
<p><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P1A"><U><I>Read
+
<p align="CENTER" style="text-indent:0em" class="cite">Table 4 Parameters in Dimensionless Model</p>
-
more</I></U></A></P>
+
<h1 id="Results">Results</h1><hr width="100%" size=2 color=gray>
-
</div>
+
<h2 id="Sensitivity analysis">Sensitivity analysis</h2>
-
<P id="Original Full Model"><h1>Original Full Model</h1></P>
+
<p>In order to find out the key parameters which will affect stability of the system at most, we need to make a sensitivity analysis on each. At first, we did brief and instinctive analyses on each parameter as follows. τ<sub>1</sub><sup>*</sup> and τ<sub>2</sub><sup>*</sup> represent time delay in cell 1 and cell 2 respectively, which have been discussed in part 2, have little influence on stability of system but intend to affect the oscillation period merely. Parameters a and b refer to feedback factors indirectly, which have not been discussed before, we will see how a and b affect our system later. We have clarified that parameter u is equivalent to  μ/γ, thus, u is directly decided by the dilution rate of signal molecules 3OC12HSL and 3OC6HSL in environment and will inevitably influence stability of oscillation. As for m and n, they are inseparably connected to the Hill parameters whose sensitivity have been analyzed in part 2, so we can deduce that m and n are both sensitive parameters to our system.</p>
-
<hr width="100%" size=2 color=gray>
+
<p>Here we mainly did sensitivity analyses on parameters m, n and u. Parameters were set fundamentally as Table 4 shows.</p>
-
 
+
<p>Simulation results reveal that the system can oscillate stably only when u<5.3(fixed the other two sensitive parameters), 11.9<m<71.3 and n>34.4. In other words, to ensure the stability of oscillation, the dilution rate cannot be too high, while the promoter 2 and 4 which affect m and n should be chosen appropriately.</p>
-
<P>Firstly we
+
<p align="CENTER" style="text-indent:0em"><img src="https://static.igem.org/mediawiki/igem.org/5/59/Part3-3.png" width="561px" height="421px"></p>
-
described the system thoroughly without leaving out any
+
<p align="center" class="cite">Figure 11 Sensitivity analyses results (On u)</p>
-
seemingly unimportant actions and factors. As a result, the
+
<p align="CENTER" style="text-indent:0em"><img src="https://static.igem.org/mediawiki/igem.org/5/5c/Part3-4.png" width="561px" height="421px"></p>
-
description of the system contains every possible mass actions as
+
<p align="center" class="cite">Figure 12 Sensitivity analyses results (On m)</p>
-
well as some hill kinetics, Henri-Michaelis-Menten kinetics, and the
+
<p align="CENTER" style="text-indent:0em"><img src="https://static.igem.org/mediawiki/igem.org/6/60/Part3-5.png" width="561px" height="421px"></p>
-
parameters were got from literature. The model was represented and
+
<p align="center" class="cite">Figure 13 Sensitivity analyses results (On n)</p>
-
simulated in the Matlab toolbox SIMBIOLOGY, but too many parameters make
+
-
it difficult to do further analyses, So here we only listed all 19 ODEs
+
-
and a reletive parameter table( see <A HREF="https://static.igem.org/mediawiki/2011/9/9a/Modeling_Wiki.pdf">attached pdf file</A>).
+
-
</P>
+
-
 
+
-
<br>
+
-
<div class="slider">
+
-
<p><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P2A"><U><I>Read
+
-
more</I></U></A></P>
+
-
</div>
+
-
<P id="Simplified DDE Model"><h1>Simplified DDE</h1></P>
+
-
<hr width="100%" size=2 color=gray>
+
-
 
+
-
<div class="imgbox">
+
-
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/b/b0/003.png" width = "440px" height="310px"/>
+
-
<p class="cite">Simplified DDEs</p>
+
-
</div>
+
-
 
+
-
<P>
+
-
original model contains too many factors for analyzing the general
+
-
property of system. To understand the essential characters of the
+
-
oscillator, we simplify the original model according to certain
+
-
appropriate assumptions, like Quasi-equilibrium
+
-
for fast reactions.</P>
+
-
<P>After series of derivation based on those assumptions, we came
+
-
  up with the following set of DDEs (Delay Differential Equations)
+
-
which contains only 6 equations, see the figure right. And it
+
-
would be much more convenient for us to do some neccessary analyses
+
-
  and research into the mathematical essence of our model.
+
-
</P>
+
-
 
+
-
<div class="imgbox2">
+
-
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/d/d5/004.png" width = "440px" height="310px"/>
+
-
<p class="cite">Figure shows all variables are oscillating</p>
+
-
</div>
+
-
 
+
-
<P>We
+
-
coded the system by DDE description in MATLAB and did simulation
+
-
analysis accordingly. The result showed that the system could
+
-
oscillate under certain parameters.</P>
+
-
<P>To
+
-
further understand what parameters could make the system oscillate,
+
-
we did bifurcation analysis on the Hill parameters. What we had to do
+
-
was find the critical points where the system can nearly oscillate
+
-
but a little disruption may lead to a steady state.</P>
+
-
<P>Depicting
+
-
all those critical points, as shown in the figure, the system could
+
-
oscillate when cellB's Hill parameters were located in the
+
-
area named <FONT COLOR="#00b0f0"></FONT><FONT COLOR="#00b0f0"><I><B>Bistable</B></I></FONT><FONT COLOR="#00b0f0"></B></I>.</P>
+
-
 
+
-
<div class="imgbox3">
+
-
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/2/20/005.png" width = "540px" height="300px"/>
+
-
<p class="cite">The figure right is the phase trajectory of two signal molecules in environment,
+
-
the more it looks like a circle, the more steadily our system will oscillate.</p>
+
-
</div>
+
-
<div class="imgbox4">
+
-
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/1/18/006.png" width = "370px" height="300px"/>
+
-
<p class="cite">Our system oscillates when parameters were selected in the area named 'Bistable'</p>
+
-
</div>
+
-
 
+
-
<div class="imgbox5">
+
-
<img class="border" style="border-color:#B2B2B2;"src="https://static.igem.org/mediawiki/2011/e/e8/007.png" width = "370px" height="280px"/>
+
-
</div>
+
-
<br><br>
+
-
<div class="temp"><P>By
+
-
adjusting certain parameters, we saw that the oscillation&rsquo;s
+
-
period and phase could be controlled properly, which is the most
+
-
impressive character of our system. Here we present a figure that the
+
-
oscillation phase was adjusted by adding araC, which could induce the
+
-
pBad promoter, in cell type B. After adding araC to our system at
+
-
certain time, the oscillation was interrupted at beginning, but could
+
-
gradually recover and finally, the phase was changed.</P></div>
+
-
<br><br><br><br><br><br>
+
-
 
+
-
<div class="slider">
+
-
<p><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P3A"><U><I>Read
+
-
more</I></U></A></P>
+
-
</div>
+
-
 
+
-
<P id="Dimensionless Model"><h1>Dimensionless Model</h1></P>
+
-
<hr width="100%" size=2 color=gray>
+
-
 
+
-
<P>In
+
-
order to make a further analysis on stability of the system, and
+
-
sensitivity of parameters, we further simplified the model to make
+
-
them dimensionless. In addition, we tried to introduce feedback to
+
-
our system and made a brief analysis on different types of
+
-
feedback we introduced. Some analyses were similar to the simplified
+
-
DDE model, and you can see more details by clicking
+
-
<A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P4">read
+
-
more</A></P>
+
-
 
+
-
<br>
+
-
<div class="slider">
+
-
<p><A HREF="https://2011.igem.org/Team:Tsinghua-A/Modeling/P4"><U><I>Read
+
-
more</I></U></A></P>
+
-
</div>
+
-
<P id="Quorum Sensing"><h1>Quorum Sensing Effect</h1></P>
+
-
<hr width="100%" size=2 color=gray>
+
-
 
+
-
<P>What
+
-
we have analyzed so far is focused on two-cell oscillation.
+
-
Quorum-sensing oscillator is not
+
-
simply a matter of expansion in magnitude, but a matter of robustness
+
-
in allowing difference of each individual cell. Moreover, we test the
+
-
adjustment of phase and period of oscillation in this part.</P>
+
-
<P>As
+
-
we all know, no two things in this world are exactly the same, so do
+
-
cells. The major differences between individual cells that we take
+
-
into consideration include:</P>
+
-
<P><B>●Each cell's activity of promoter is varied, so each cell has
+
-
different rate to generate AHL.</B></P>
+
-
<P><B>●The initial amount of AHL may be disproportionally distributed among
+
-
cells.</B></P>
+
-
<P>The rate of generating AHL is closely related to parameter m and n.
+
-
Therefore, we introduce randomness to both parameters by letting them
+
-
obey normal distribution, that is:
+
-
</P>
+
-
<P ALIGN=CENTER style="text-intent:0em">m(i)= &mu;1+<I>N</I>(0,&sigma;1);</P>
+
-
<P ALIGN=CENTER style="text-intent:0em">n(i)= &mu;2+<I>N</I>(0,&sigma;2);</P>
+
-
<P ALIGN=LEFT><A NAME="OLE_LINK63"></A><A NAME="OLE_LINK62"></A>&mu;<SPAN LANG="en-US">1
+
-
and &mu;2 are the average ability of generating 30C6HSL and 3012CHSL,
+
-
and normal distribution-- </SPAN><SPAN LANG="en-US"><I>N</I></SPAN><SPAN LANG="en-US">(0,&sigma;)--describes
+
-
the fluctuations of AHL generating rate in individual cell. We then
+
-
expanded our equations from 2 cells to a population of cells. Each
+
-
cell share a mutual environment in which we assume that AHL in
+
-
environment is proportionally distributed.</SPAN></SPAN></P>
+
-
<P ALIGN="center" style="text-intent:0em"><IMG SRC="https://static.igem.org/mediawiki/2011/1/17/008.png" WIDTH=800 HEIGHT=600 BORDER=0></P>
+
-
<P>The
+
-
figures indicate that our system can oscillate synchronically being
+
-
able to tolerate differences at certain range among a population of
+
-
cells.</P>
+
-
<P>We
+
-
also tested whether the oscillation is dependent on initial
+
-
distribution of AHL by changing the initial amount drastically by
+
-
letting them follow uniform distribution. That is:</P>
+
-
<P ALIGN="center" style="text-intent:0em">Initial(i)= <I>U</I>(0,20);</P>
+
-
<P>Based
+
-
on this distribution restraining the initial AHL concentration in
+
-
each cell, we simulated out a figure as follows.</P>
+
-
<P ALIGN="center" style="text-intent:0em"><IMG SRC="https://static.igem.org/mediawiki/2011/d/d2/009.png" WIDTH=800 HEIGHT=600 BORDER=0></P>
+
-
<P>The
+
-
results demonstratively give evidence proving that our system can
+
-
start to oscillate synchronically given variant initial starting
+
-
status.</P>
+
-
<br>
+
-
<P id="References"><h1>References</h1></P>
+
<h2 id="Stability analysis">Stability analysis</h2>
-
<hr width="100%" size=2 color=gray>
+
<p>Although we have done sensitivity analyses on some predominant parameters and acquired fabulous results, these analyses were all based on unary composites, holding only a single subject. We are not content with only doing sensitivity analyses, which merely care about single-in-single-out outcomes but not considering binary relation in systematic concept. So we made a bifurcation analysis on binary parameter (u,m) adopting the same method as what we have done in part 2.</p>
-
<P>[1]
+
<p align="CENTER" style="text-indent:0em"><img src="https://static.igem.org/mediawiki/igem.org/6/69/Part3-6.png" width="705px" height="101px"></p>
-
Uri Alon, (2007). Network motifs: theory and experimental approaches.
+
<p align="center" class="cite">Table 3 critical points (u,m) for oscillation</p>
-
Nature.</P>
+
<p> Depicting those points into an axis, we got the bifurcation line, which indicates the parameters’ value range when our system can oscillate stably is in the area marked by ‘bistable’ as follows.</p>
-
<P>[2]
+
<p align="CENTER" style="text-indent:0em"><img src="https://static.igem.org/mediawiki/igem.org/7/73/Part3-7.png" width="900px" height="675px"></p>
-
Chunbo Lou, Xili Liu, Ming Ni, et al. (2010). Synthesizing a novel
+
<p align="center" class="cite">Figure 14 Bifurcation analysis on (u,m)</p>
-
genetic sequential logic circuit: a push-on push-off switch.
+
-
Molecular Systems Biology.</P>
+
-
<P>[3]
+
-
Tal Danino, Octavio Mondragon-Palomino, Lev Tsimring &amp; Jeff Hasty
+
-
(2010). A synchronized quorum of genetic clocks. Nature.</P>
+
-
<P>[4]
+
-
Marcel Tigges, Tatiana T. Marquez-Lago, Jorg Stelling &amp; Martin
+
-
Fussenegger (2009). A tunable synthetic mammalian oscillator. Nature.</P>
+
-
<P>[5]
+
-
Sergi Regot, Javio Macia el al. (2010). Distributed biological
+
-
computation with multicellular engineered networks. Nature.</P>
+
-
<P>[6]
+
-
Martin Fussenegger, (2010). Synchronized bacterial clocks. Nature.</P>
+
-
<P>[7]
+
-
Andrew H Babiskin and Christina D Smolke, (2011). A synthetic library
+
-
of RNA control modules for predictable tuning of gene expression in
+
-
yeast. Molecular Systems Biology.</P>
+
-
<P>[8]
+
-
Santhosh Palani and Casim A Sarkar, (2011). Synthetic conversion of a
+
-
graded receptor signal into a tunable, reversible switch. Molecular
+
-
Systems Biology.</P>
+
-
<P>[9]
+
-
Nancy Kopell, (2002). Synchronizing genetic relaxation oscillation by
+
-
intercell signaling. PNS</P>
+
-
<br><br><br><br>
+
<h2 id="Feedback analysis">Feedback analysis</h2>
-
<p style="text-indent:0em" align="CENTER"><a href="https://2011.igem.org/Team:Tsinghua-A"><img src="https://static.igem.org/mediawiki/2011/9/92/Killbanner_header.jpg" alt="" width="960"/><a href="https://2011.igem.org"><img src="https://static.igem.org/mediawiki/igem.org/2/29/Killbanner_header2.jpg" alt="" width="960"/></p>
+
<p>By changing parameters a and b, which is equivalent to varying types of feedback introduced, we got simulation results as follows (In order to manifest more clearly, the parameter v was set larger, thus each cell’s feedback effect would put greater influence on the whole system).</p>
 +
<p align="CENTER" style="text-indent:0em"><img src="https://static.igem.org/mediawiki/igem.org/d/d4/Part3-8.png.jpg" width="619px" height="606px"></p>
 +
<p align="center" class="cite">Figure 15 System with feedback</p>
 +
<p>  The analysis shows that only with a negative feedback mechanism could the overall system be working as an oscillator. When a=b=0, the system contains no artificial negative feedback, but there may be some inherent negative feedback within the system.</p>
 +
<p align="CENTER" style="text-indent:0em"><a href="https://2011.igem.org/Team:Tsinghua-A"><img src="https://static.igem.org/mediawiki/2011/9/92/Killbanner_header.jpg" alt="" width="960"/><a href="https://2011.igem.org"><img src="https://static.igem.org/mediawiki/igem.org/2/29/Killbanner_header2.jpg" alt="" width="960"/></p>
</BODY>
</BODY>
</HTML>
</HTML>

Revision as of 20:40, 25 October 2011

Republic by Free CSS Templates

 

Modeling::Dimensionless Model

Contents


Dimensionless process


In order to make a further analysis on stability of the system, sensitivity of parameters, feedback factors-we manipulate all the arguments and parameters to make them dimensionless. Analysis of this part is crucial since parameters in vivo experiment may be different and even at odds with modeling ones but a proper dimensionless can reveal the mathematical essence of our model.

Considering the Hill equation in the simplification DDEs, A1c1 and KM11 should be the same order of magnitude, thus KM11 is a well measurement of quantities of A1c1. We have:

Parameters


Parameters in equations are listed below.

Table 4 Parameters in Dimensionless Model

Results


Sensitivity analysis

In order to find out the key parameters which will affect stability of the system at most, we need to make a sensitivity analysis on each. At first, we did brief and instinctive analyses on each parameter as follows. τ1* and τ2* represent time delay in cell 1 and cell 2 respectively, which have been discussed in part 2, have little influence on stability of system but intend to affect the oscillation period merely. Parameters a and b refer to feedback factors indirectly, which have not been discussed before, we will see how a and b affect our system later. We have clarified that parameter u is equivalent to μ/γ, thus, u is directly decided by the dilution rate of signal molecules 3OC12HSL and 3OC6HSL in environment and will inevitably influence stability of oscillation. As for m and n, they are inseparably connected to the Hill parameters whose sensitivity have been analyzed in part 2, so we can deduce that m and n are both sensitive parameters to our system.

Here we mainly did sensitivity analyses on parameters m, n and u. Parameters were set fundamentally as Table 4 shows.

Simulation results reveal that the system can oscillate stably only when u<5.3(fixed the other two sensitive parameters), 11.934.4. In other words, to ensure the stability of oscillation, the dilution rate cannot be too high, while the promoter 2 and 4 which affect m and n should be chosen appropriately.

Figure 11 Sensitivity analyses results (On u)

Figure 12 Sensitivity analyses results (On m)

Figure 13 Sensitivity analyses results (On n)

Stability analysis

Although we have done sensitivity analyses on some predominant parameters and acquired fabulous results, these analyses were all based on unary composites, holding only a single subject. We are not content with only doing sensitivity analyses, which merely care about single-in-single-out outcomes but not considering binary relation in systematic concept. So we made a bifurcation analysis on binary parameter (u,m) adopting the same method as what we have done in part 2.

Table 3 critical points (u,m) for oscillation

Depicting those points into an axis, we got the bifurcation line, which indicates the parameters’ value range when our system can oscillate stably is in the area marked by ‘bistable’ as follows.

Figure 14 Bifurcation analysis on (u,m)

Feedback analysis

By changing parameters a and b, which is equivalent to varying types of feedback introduced, we got simulation results as follows (In order to manifest more clearly, the parameter v was set larger, thus each cell’s feedback effect would put greater influence on the whole system).

Figure 15 System with feedback

The analysis shows that only with a negative feedback mechanism could the overall system be working as an oscillator. When a=b=0, the system contains no artificial negative feedback, but there may be some inherent negative feedback within the system.