Team:HokkaidoU Japan/Project/GSK

From 2011.igem.org

(Difference between revisions)
m (GSK tag)
m (Investigation of T3SS-injectable proteins)
Line 21: Line 21:
Non-phosphospecific antibodies for determination of total amount of expressed fusion protein with the tag we used.
Non-phosphospecific antibodies for determination of total amount of expressed fusion protein with the tag we used.
-
==Investigation of T3SS-injectable proteins==
+
==Construction of GSK tagged T3SS-injectable proteins==
-
Here we will discuss about the structure of proteins which could be injected or not. We tried five different proteins: mnt repressor, RFP, GFP, Cre DNA recombinase, (CCR5) transmembrane, LacI and Luciferase. All were chosen from biobrick distribution. As these parts are widely used in iGEM studying them would have a bigger impact compared to exotic ones.
+
Here we show a list of proteins which are to be tested for protein screening using GSK tag. We propose 8 different proteins: mnt repressor, Gal4 DNA binding domain, RFP, GFP, Cre DNA recombinase, CCR5, LacI and Luciferase. All are chosen from biobrick distribution. As these parts are widely used in iGEM, studying them would have a bigger impact compared to exotic ones.
-
Our main concern was not with the size but the stability of proteins. Previous research show that proteins like Zinc-Fingers are very stable and couldn't be injected. Hight stability prevents unfolding by T3SS chaperons.
+
Our main concern is not with the size but the stability of proteins against unfolding by T3SS chaperone. Previous research indicated that proteins containing Zinc-Fingers are very stable and couldn't be injected. Proteins containing such stable structure is thought to  resist against unfolding by T3SS chaperon.
-
We showed that GFP can be injected into eucaryotic cells by confocal laser microscope imaging. Thus it can serve as a control. Next is RFG, a fluorescent protein but with different structure from GFP.  
+
So, we have cloned that various kinds of proteins (Table. 1) into the Bsa I cloning site mentioned [[Team:HokkaidoU_Japan/Project/Backbone|here]], so that the T3SS carrying E. coli can produce a T3S tagged protein.  
 +
We have previously shown that GFP can be injected into eucaryotic cells by observation under confocal laser microscope. Thus it can be a positive control.
{|class="protein" style="text-align:center;"
{|class="protein" style="text-align:center;"
|-
|-
-
!rowspan="2"|Name
+
!Name
|Registry
|Registry
|2011 distribution
|2011 distribution
Line 37: Line 38:
|total molecular weight (kDa)
|total molecular weight (kDa)
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!mnt repressor  
-
|-
+
-
!rowspan="2"|mnt repressor  
+
|[http://partsregistry.org/Part:BBa_C0072 BBa_C0072]
|[http://partsregistry.org/Part:BBa_C0072 BBa_C0072]
|1-12L
|1-12L
Line 45: Line 44:
|42.1
|42.1
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!Gal4 DNA binding domain
-
|-
+
-
!rowspan="2"|Gal4 DNA binding domain
+
|[http://partsregistry.org/Part:BBa_K105007 BBa_K105007]
|[http://partsregistry.org/Part:BBa_K105007 BBa_K105007]
|3-9I
|3-9I
Line 53: Line 50:
|47.6
|47.6
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!RFP
-
|-
+
-
!rowspan="2"|RFP
+
|[http://partsregistry.org/Part:BBa_J06504 BBa_J06504]
|[http://partsregistry.org/Part:BBa_J06504 BBa_J06504]
|1-13F
|1-13F
Line 61: Line 56:
|57.7
|57.7
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!GFP
-
|-
+
-
!rowspan="2"|GFP
+
|[http://partsregistry.org/Part:BBa_E0040 BBa_E0040]
|[http://partsregistry.org/Part:BBa_E0040 BBa_E0040]
|1-14K
|1-14K
Line 69: Line 62:
|57.9
|57.9
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!Cre DNA recombinase
-
|-
+
-
!rowspan="2"|Cre DNA recombinase
+
|[http://partsregistry.org/Part:BBa_J61047 BBa_J61047]
|[http://partsregistry.org/Part:BBa_J61047 BBa_J61047]
|1-5D
|1-5D
Line 77: Line 68:
|69.6
|69.6
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!CCR5
-
|-
+
-
!rowspan="2"|CCR5
+
|[http://partsregistry.org/Part:BBa_I712002 BBa_I712002]
|[http://partsregistry.org/Part:BBa_I712002 BBa_I712002]
|2-3D
|2-3D
Line 85: Line 74:
|70.4
|70.4
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!LacI
-
|-
+
-
!rowspan="2"|LacI
+
|[http://partsregistry.org/Part:BBa_I732100 BBa_I732100]
|[http://partsregistry.org/Part:BBa_I732100 BBa_I732100]
|2-10E
|2-10E
Line 93: Line 80:
|71.4
|71.4
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!Luciferase
-
|-
+
-
!rowspan="2"|Luciferase
+
|[http://partsregistry.org/Part:BBa_I712019 BBa_I712019]
|[http://partsregistry.org/Part:BBa_I712019 BBa_I712019]
|1-10H
|1-10H
|1653
|1653
|92.1
|92.1
-
|-
 
-
|colspan="4" style="text-align:left;"|Discription
 
|}
|}
 +
Table. 1 A list of several recommended proteins to be injected. Total molecular wight of each protein contains T3S signal and GSK tag domain.
=References=
=References=

Revision as of 19:57, 5 October 2011

Contents

GSK tag

Glycogen Synthase Kinase 3β is known to be phosphorylated by several enzymes in eukaryotic cells. We used first 13 amino acid as a tag (GSK tag) of injected fusion protein[1]. Ninth amino acid, serine, is phosphorylated in eukaryotic cells (Fig. 1). Phosphorylated serine in the polypeptide could be detected by using phsopho-specific antibodies which bind to only phosphorylated GSK tag. So it is effective to distinguish GSK tag fusion protein existing in eukaryotic cells from uninjected protein remaining E. coli.

GSK tag was constructed by Julie Torruellas Garcia, Gregory V. Plano et al. We removed present Spe I site in the sequence by silent mutation.

Fig. 1
 Translation: M   S   G   R   P   R   T   T   S-p  F   A   E   S
 Original   :ATG AGT GGT CGC CCT CGC ACT ACT  AGT TTC GCT GAA AGT
 rm Spe I   :ATG AGT GGT CGC CCT CGC ACT ACA* AGT TTC GCT GAA AGT 
Phosphorylated Serine is shown as S-p.


GSK tag can be added to N terminus[1], C terminus[1], and anywhere in middle[2], of the protein. We alocated the tag between SlrP secretion tag and the protein we to be injected.

Non-phosphospecific antibodies for determination of total amount of expressed fusion protein with the tag we used.

Construction of GSK tagged T3SS-injectable proteins

Here we show a list of proteins which are to be tested for protein screening using GSK tag. We propose 8 different proteins: mnt repressor, Gal4 DNA binding domain, RFP, GFP, Cre DNA recombinase, CCR5, LacI and Luciferase. All are chosen from biobrick distribution. As these parts are widely used in iGEM, studying them would have a bigger impact compared to exotic ones.

Our main concern is not with the size but the stability of proteins against unfolding by T3SS chaperone. Previous research indicated that proteins containing Zinc-Fingers are very stable and couldn't be injected. Proteins containing such stable structure is thought to resist against unfolding by T3SS chaperon.

So, we have cloned that various kinds of proteins (Table. 1) into the Bsa I cloning site mentioned here, so that the T3SS carrying E. coli can produce a T3S tagged protein.

We have previously shown that GFP can be injected into eucaryotic cells by observation under confocal laser microscope. Thus it can be a positive control.

Name Registry 2011 distribution length (bp) total molecular weight (kDa)
mnt repressor [http://partsregistry.org/Part:BBa_C0072 BBa_C0072] 1-12L 288 42.1
Gal4 DNA binding domain [http://partsregistry.org/Part:BBa_K105007 BBa_K105007] 3-9I 438 47.6
RFP [http://partsregistry.org/Part:BBa_J06504 BBa_J06504] 1-13F 714 57.7
GFP [http://partsregistry.org/Part:BBa_E0040 BBa_E0040] 1-14K 720 57.9
Cre DNA recombinase [http://partsregistry.org/Part:BBa_J61047 BBa_J61047] 1-5D 1037 69.6
CCR5 [http://partsregistry.org/Part:BBa_I712002 BBa_I712002] 2-3D 1059 70.4
LacI [http://partsregistry.org/Part:BBa_I732100 BBa_I732100] 2-10E 1086 71.4
Luciferase [http://partsregistry.org/Part:BBa_I712019 BBa_I712019] 1-10H 1653 92.1

Table. 1 A list of several recommended proteins to be injected. Total molecular wight of each protein contains T3S signal and GSK tag domain.

References

  • Julie Torruellas Garcia, Franco Ferracci, Michael W. Jackson,1 Sabrina S. Joseph, Isabelle Pattis, Lisa R. W. Plano, Wolfgang Fischer, and Gregory V. Plano. 2006. Measurement of Effector Protein Injection by Type III and Type IV Secretion Systems by Using a 13-Residue Phosphorylatable Glycogen Synthase Kinase Tag. Infect Immun.Vol.74:5645-57. [http://www.ncbi.nlm.nih.gov/pubmed/16988240 PubMed]
  • JWensheng Luo and Michael S. Donnenberg. 2011. Interactions and Predicted Host Membrane Topology of the Enteropathogenic Escherichia coli Translocator Protein EspB. J. Bacteriol.Vol.193:2972–80. [http://www.ncbi.nlm.nih.gov/pubmed/21498649 PubMed]
Retrieved from "http://2011.igem.org/Team:HokkaidoU_Japan/Project/GSK"