Team:IIT Madras/Dry lab/Modelling
From 2011.igem.org
Line 1: | Line 1: | ||
- | {{:Team | + | {{:Team:IIT_Madras/Teamplate:header}} |
<html> | <html> | ||
<body> | <body> |
Revision as of 23:21, 4 October 2011
Team:IIT Madras/Teamplate:header
GREEN LANTERN
One of the challenging task was to establish the lighting setup which would power the proteorhodopsin in presence of retinal to carry its H+ pumping activity in the carbon deficient condition. On rigorous searching we came across a research paper (reference and relevant extract mentioned below) which clearly defined the wavelenght and intensity to maintain the proton motive force (pmf). OVLFx3C7 Series (green): OVLFG3C7(fig.3)
Source
Light-powering Escherichia coli with proteorhodopsin Jessica M. Walter, Derek Greenfield, Carlos Bustamante, and Jan Liphardt . Contributed by Carlos Bustamante, December 13, 2006
Prior to this paper the role of light in powering cells containing proteorhodopsin and participation in ocean energy fluxes remained largely unclear. This paper makes an attempt to show that when cellular respiration is inhibited by depleting oxygen or by the respiratory poison azide, Escherichia coli cells expressing PR become light-powered.
The paper clearly highlighted the following main points:-
Instrumentation
Power density values for green light refer to the power density passed by a D540/25ϫ filter originating at a 175 W Xenon bulb .The sample chamber was periodically illuminated with bright green light (160mW/cm2) coinciding with the maximum of PR’s absorption spectrum, 525 nm. At 525 nm the sample was observed to show maximum absorption (fig.1).
Based on the above fact we decided to use green LED of dominant wavelenght of 525 nm.
Diagrams
fig(1) & fig(2) Copyright@Light-powering Escherichia coli with proteorhodopsin Jessica M. Walter, Derek Greenfield, Carlos Bustamante, and Jan Liphardt. Contributed by Carlos Bustamante, December 13, 2006
Specifications
LED:
Circuit Diagram of the Setup
Observation
Reading 1
Reading 2
Reading 3
Reading 4
Vss (V)
5.56
5.56
5.56
5.56
Vr(V)
0.5
1.0
0.33
0.66
V led(V)
5.06
4.56
5.23
4.9
I led(mA)
29.7
26.8
30.7
28.8
Calculation
Assuming average current across the LED to be 30 mA. This gives an Luminous Efficiency to be 135% (fig.4).
So the luminous Intensity of the entire lighting setup = 109.4922 mW/cm2
The 140 LEDs were fixed in 3 breadboards . The luminous intensity calculated above is a cumulative effect of all The LED's. So depending upon how many breadboards we use, we can choose to establish a luminous intensity of 37 mW/cm2, 74 mW/cm2 and 109.4922 mW/cm2.
The distance of the lighting source from the flask containing Proteorhodopsin and Retinal was strictly maintained at 15cm.