Team:NCTU Formosa/modeling
From 2011.igem.org
Jennyjeson (Talk | contribs) |
|||
Line 179: | Line 179: | ||
} | } | ||
+ | <style type = "text/javascript" language = "JavaScript"> | ||
+ | function out(id_num){ | ||
+ | var oa = document.getElementById(id_num); | ||
+ | if(oa.style.display == "none"){ | ||
+ | oa.style.display = "block"; | ||
+ | } | ||
+ | return false; | ||
+ | } | ||
+ | </script> | ||
/*content*/ | /*content*/ | ||
Line 287: | Line 296: | ||
font-weight: bold; | font-weight: bold; | ||
} | } | ||
+ | |||
+ | |||
</style> | </style> | ||
+ | <style> | ||
+ | |||
+ | table { | ||
+ | border: 0; | ||
+ | font-family: Calibri, Verdana, helvetica, sans-serif; | ||
+ | font-size:18px; | ||
+ | background-color: #ede8e2; | ||
+ | margin: 5px 0 5px 0; | ||
+ | padding: 5px 0 5px 10px; | ||
+ | text-align:top; | ||
+ | } | ||
+ | td{vertical-align:top;} | ||
+ | |||
+ | h3 { font-size: 20px; | ||
+ | text-align:right; | ||
+ | text-shadow: #C0C0C0 0px 0px 2px; | ||
+ | vertical-align: baseline; | ||
+ | } | ||
+ | div.intro img { | ||
+ | border-color: white ; | ||
+ | border-style:solid; | ||
+ | float:left; | ||
+ | width:expression(this.width>500?"250px":this.width+"px"); | ||
+ | } | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | </style> | ||
+ | |||
+ | |||
</head> | </head> | ||
Line 298: | Line 340: | ||
<ul id="cm-nav"> | <ul id="cm-nav"> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa">Home</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa">Home</a></li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">Team </a> |
<ul> | <ul> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/members">Members</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/members">Members</a></li> | ||
Line 305: | Line 347: | ||
</ul> | </ul> | ||
</li> | </li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">Project</a> |
<ul class="arrow-pad"> | <ul class="arrow-pad"> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/introduction">Introduction</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/introduction">Introduction</a></li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">RNA Thermometer</a> |
<ul> | <ul> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/RNA_design">Design</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/RNA_design">Design</a></li> | ||
Line 315: | Line 357: | ||
</ul> | </ul> | ||
</li> | </li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">CI promoter </a> |
<ul> | <ul> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/CI_design">Design</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/CI_design">Design</a></li> | ||
Line 322: | Line 364: | ||
</ul> | </ul> | ||
</li> | </li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">Carotenoid synthesis pathway</a> |
<ul> | <ul> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/CSP_design">Design</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/CSP_design">Design</a></li> | ||
Line 328: | Line 370: | ||
</ul> | </ul> | ||
</li> | </li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">Butanol pathway</a> |
<ul> | <ul> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/BP_design">Design</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/BP_design">Design</a></li> | ||
Line 334: | Line 376: | ||
</ul> | </ul> | ||
</li> | </li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">Violacein pathway</a> |
<ul> | <ul> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/VP_design">Design</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/VP_design">Design</a></li> | ||
Line 347: | Line 389: | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/humanpractice">Human Practice</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/humanpractice">Human Practice</a></li> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/contributions">Attribution</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/contributions">Attribution</a></li> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">Notebook </a> |
<ul> | <ul> | ||
- | <li><a class="arrow | + | <li><a onClick="out('cm=nav')" class="arrow">Protocols</a> |
<ul> | <ul> | ||
<li><a href="https://2011.igem.org/Team:NCTU_Formosa/protocol">Mutation</a></li> | <li><a href="https://2011.igem.org/Team:NCTU_Formosa/protocol">Mutation</a></li> | ||
Line 359: | Line 401: | ||
</li> | </li> | ||
</ul> | </ul> | ||
+ | |||
<br><br> | <br><br> |
Revision as of 14:50, 4 October 2011
Measurement
Modeling and simulations of high temperature induced device BBa_K098995 – cI promoter & cI repressor
In order to characterize this high temperature induced device BBa_K098995, the fluorescence intensity ofBBa_K098988 is measured by the flow cytometry (Figure. 1).
Figure1. Part BBa_K098988 Design. The heat induced device BBa_K098995uses gene BBa_K098997 coding for cI repressor to inhibit the cI promoter BBa_R0051. The activity of cI repressor is decreased by elevating temperature from 30 ℃ to 42 ℃. A differential equation is used to calculate protein expression activity of BBa_K098995 as follows.
This equation describes the concentration of GFP in BBa_K098988change with time (Figure. 1). Alpha-Temp is the protein expression rates corresponding to BBa_K098995which is a temperature sensitive expression device. To describe transition during log phase and stationary phase, the alpha-Temp is assumed to zero in stationary phase. Gamma-GFP are decay rates of the GFP proteins. When bacteria divide, the molecular in a bacterium will be dilute. Because bacteria grow faster, the dilution rate d(t) is included in this model and can be calculated from OD ratio of medium (Figure. 2). The values of the kinetic parameters used in the simulation were initially obtained from the literature and experimental data. Data computations were performed with Matlab software. A program was written and used as a subroutine in Matlab for parameter optimization using nonlinear regression (Figure. 3).
Figure 2. The OD ratio is increased faster in log phase than it in stationary phase. The dilution rate d(t) can be calculated from OD ratio and used in out model.
Figure 3. The behavior of high temperature induced device BBa_K098988 at 25°C, 37 °C and 42°C. Experimental data (dot) and simulated results (line) of the model suggest this temperature-dependent device can control the expression level of the target protein by the host cell’s incubation. The fitting results indicate our dynamic model can quantitatively assess the protein expression activity of BBa_K098988during log phase and stationary phase.
Using least squares estimation from experimental data, the relative the protein expression activity of BBa_K098988 at 25°C, 37 °C and 42°C were estimated (Figure. 4).
Figure 4. The relative the protein expression activity of BBa_K098988at 25°C, 37 °C and 42°C estimated using least squares estimation from experimental data. The protein expression activity at 42°C is higher than 25°C, 37 °C
According to the fitting results (Figure. 3), the dynamic model successfully approximated the behavior of our high-temperature induced system. The model equation presents interesting mathematical properties that can be used to explore how qualitative features of the genetic circuit depend on reaction parameters. This method of dynamic modeling can be used to guide the choice of genetic ‘parts’ for implementation in circuit design in the future.
References
Alon, U. (2007) An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC.