Team:ZJU-China/Modeling/Biobrick

From 2011.igem.org

(Difference between revisions)
Line 203: Line 203:
</p>
</p>
</div>
</div>
 +
</div>
 +
<div class="block" id="mmodeling">
 +
<h3>Equations&Parameters</h3><hr/>
 +
<p>Based on the above, our model could be founded with following ODEs:
 +
<img src="https://static.igem.org/mediawiki/2011/9/91/Zju_function4-10.png"  style="float:right;"  alt="function4-10" />
 +
</p>
-
<div class="block" id="sr"></div>
 
</div>
</div>
<script type="text/javascript">
<script type="text/javascript">

Revision as of 11:37, 3 October 2011

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Modeling|biobrick

This model is used for simulating the behavior of three genetic circuits we designed

Introduction


abstract:
  We will model our gene regulatory networks using Michaelis-Menten enzymatic kinetics,together with the usual rules of reaction kinetics. The resulting models, when spatial effects are neglected, are given in terms of ordinary differential equations describing the rate of change of the concentrations of gene products and proteins. A key component of all these models is the Hill function, used to describe the transcription phase. The presence of this highly nonlinear function, whilst accurately modeling the network, inevitably leads to restrictions on the analytical tools available to understand and predict the dynamics.

Basic concepts and assumptions


The ODE formalism models the concentrations of RNAs, proteins, and other molecules by time-dependent variables with values contained in the set of nonnegative real numbers. Regulatory interactions take the form of functional and differential relations between the concentration variables. For a typical transcription-translation process, the ODEs modeling approach associates two ODEs with any given gene i; one modeling the rate of change of the concentration of the transcribed mRNA r_i, and the other describing the rate of change of the concentration of its corresponding translated protein p_i. Thus for our network with 3 genes we have: function1-2

Where (1) describes transcription, (2) describes translation, and i = 1,…,N. The functions R_i(p_j) describe the dependence of mRNA concentration on protein concentration p_j (If protein p_j has no effect on mRNA r_i, then correspond function is set to zero.) The functional F(·) in (1) is defined in terms of sums and products of functions R_i. Function P_i in (2) describes the translation of the mRNA r_i into a protein p_i. Parameters γ_i, δ_i (i = 1,…,N), represent the degradation parameters of the mRNAs and proteins produced by gene i. As is common, we shall assume that the degradation of proteins or mRNAs is not regulated, namely that it does not depend on the concentrations of other molecules in the cell. Function R_i is assumed to be in the form of Hill function as usual (since our cases are all inhibitors, we shall denote the Hill function h-(p,K,n)), and the function P_i is taken to be a linear term proportional to the concentration of mRNA r_i. function3

where K_i is the microscopic dissociation constant, and n_i is Hill coefficient, describing cooperativity. Biobrick

Equations&Parameters


Based on the above, our model could be founded with following ODEs: function4-10