Team:Yale/Project/Introduction
From 2011.igem.org
(Difference between revisions)
Line 8: | Line 8: | ||
<img src="https://static.igem.org/mediawiki/2011/e/e0/Yale-Comparison.jpg" style="margin-left:auto; margin-right:auto; display:block;" /><br /> | <img src="https://static.igem.org/mediawiki/2011/e/e0/Yale-Comparison.jpg" style="margin-left:auto; margin-right:auto; display:block;" /><br /> | ||
Recently, multiplex automated genome engineering (MAGE) was developed for large-scale programming and evolution of cells. MAGE allows rapid generation of sequence diversity across a large population of cells through oligo-mediated allelic replacement (Wang, 2009). Synthetic oligonucleotides are repeatedly and continuously introduced to a population of cells and are incorporated at the lagging strand of the replication fork during DNA replication. This approach was previously used to optimize the DXP biosynthesis pathway in E coli to overproduce the industrially important isoprenoid lycopene. Because MAGE allows for targeted insertions, deletions, and mismatches to protein domains of interest, it provides a unique platform for the optimization of the function of RiAFP. <br /><br /> | Recently, multiplex automated genome engineering (MAGE) was developed for large-scale programming and evolution of cells. MAGE allows rapid generation of sequence diversity across a large population of cells through oligo-mediated allelic replacement (Wang, 2009). Synthetic oligonucleotides are repeatedly and continuously introduced to a population of cells and are incorporated at the lagging strand of the replication fork during DNA replication. This approach was previously used to optimize the DXP biosynthesis pathway in E coli to overproduce the industrially important isoprenoid lycopene. Because MAGE allows for targeted insertions, deletions, and mismatches to protein domains of interest, it provides a unique platform for the optimization of the function of RiAFP. <br /><br /> | ||
- | The mechanism by which antifreeze proteins bind and inhibit ice growth has not yet been resolved. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years (Garnham, 2010). Generating high-resolution three-dimensional structures of antifreeze proteins may help better understand the structure-function relationship and elucidate the ice-binding mechanism. Moreover, having a clear idea of how AFPs bind to the surface of ice crystals would allow the engineering of a great diversity of new, strong, versatile AFPs. To date, only four crystal structures of various fish and one insect AFP has been generated ( | + | The mechanism by which antifreeze proteins bind and inhibit ice growth has not yet been resolved. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years (Garnham, 2010). Generating high-resolution three-dimensional structures of antifreeze proteins may help better understand the structure-function relationship and elucidate the ice-binding mechanism. Moreover, having a clear idea of how AFPs bind to the surface of ice crystals would allow the engineering of a great diversity of new, strong, versatile AFPs. To date, only four crystal structures of various fish and one insect AFP has been generated (Garnham, 2010). |
</div> | </div> | ||
</div> | </div> |
Latest revision as of 03:22, 29 September 2011