Team:Tec-Monterrey/projectoverview
From 2011.igem.org
(Difference between revisions)
Line 595: | Line 595: | ||
<br> | <br> | ||
<p class="textojustif"> <i>C. thermocellum</i> endoglucanase CelD is an enzyme that belongs to family E cellulases. Family E includes, beside <i>C.thermocellum</i> CelD, a number of cellulases such as <i>Butyrivibrw fibrisolvens</i> cellodextrinase Cedl, <i>C. thermocellum</i> endoglucanase CelF, <i>Cellulomonas fimi</i> endoglucanase CenB, <i>Clostridium stercorarium</i> Avicelase I, <i>Persea americana</i> endoglucanase, <i>Dictyostelium discoideum</i> endoglucanase, <i>Cellulomonas fimi</i> endoglucanase CenC, and <i>Pseudomonas fluorescens</i> var. cellulosa endoglucanase A. The sequence of CelD used to construct genetic frame was modified according to Chauvaux <i>et al</i>., substituing Asp523 by Ala, since that mutation increases specific activity of CelD to 224% . (Chauvaux S et al., 1992) | <p class="textojustif"> <i>C. thermocellum</i> endoglucanase CelD is an enzyme that belongs to family E cellulases. Family E includes, beside <i>C.thermocellum</i> CelD, a number of cellulases such as <i>Butyrivibrw fibrisolvens</i> cellodextrinase Cedl, <i>C. thermocellum</i> endoglucanase CelF, <i>Cellulomonas fimi</i> endoglucanase CenB, <i>Clostridium stercorarium</i> Avicelase I, <i>Persea americana</i> endoglucanase, <i>Dictyostelium discoideum</i> endoglucanase, <i>Cellulomonas fimi</i> endoglucanase CenC, and <i>Pseudomonas fluorescens</i> var. cellulosa endoglucanase A. The sequence of CelD used to construct genetic frame was modified according to Chauvaux <i>et al</i>., substituing Asp523 by Ala, since that mutation increases specific activity of CelD to 224% . (Chauvaux S et al., 1992) | ||
+ | <br> | ||
+ | <br> | ||
+ | <p class="textojustif"> The extracellular sucrase SacC was obtained from <i>Zymomonas mobilis</i> by using PCR tecniques with the help of PhD. José Manuel Aguilar Yáñez. <i>Zymomonas mobilis</i> is a gram negative bacterium that has been shown to produce ethanol at a rate three to four fold, and at a higher final yield compared | ||
+ | to the traditionally used yeast strains (Rogers <i>et al</i>., 1982). However, this organism uses only a narrow range of substrates, which is limited to glucose, fructose and sucrose (Swings & DeLey, 1977) An extracellular sucrase (SacC) has a high specific activity for sucrose hydrolysis. Nearly this enzyme contributes 60% of the extracellular sucrase activity of <i>Zymomonas mobilis</i>. The purified active enzyme from <i>Zymomonas mobilis</i> is a monomer with a molecular weight of 46 kDa and the sacC gene has already been cloned and expressed in <i>E. coli</i>. (Gurunathan S & Gunasekaran P, 2004) | ||
<br> | <br> | ||
<br> | <br> | ||
Line 608: | Line 612: | ||
<br> | <br> | ||
<p class="textojustif"> Chauvaux S, Beguing P, & Aubert JP (1992) Site-directed Mutagenesis of Essential Carboxylic Residues in Clostridium thermocellum Endoglucanase CelD. The Journal of Biological Chemistry Vol 267(7) 4472-4478. | <p class="textojustif"> Chauvaux S, Beguing P, & Aubert JP (1992) Site-directed Mutagenesis of Essential Carboxylic Residues in Clostridium thermocellum Endoglucanase CelD. The Journal of Biological Chemistry Vol 267(7) 4472-4478. | ||
+ | <br> | ||
+ | <br> | ||
+ | <p class="textojustif"> Gurunathan S & Gunasekaran P (2004) Differential Expression of Zymomonas mobilis Sucrase Genes (sacB and sacC) in Escherichia coli and Sucrase Mutants of Zymomonas mobilis. Brazilian Archives of Biology and Technology Vol 47(3):329-338. | ||
<br> | <br> | ||
<br> | <br> | ||
<p class="textojustif"> Hanover LM & White JS (1993) Manufacturing, composition, and applications of fructose. Am J Clin Nutr. Vol. 58:724S-32S. | <p class="textojustif"> Hanover LM & White JS (1993) Manufacturing, composition, and applications of fructose. Am J Clin Nutr. Vol. 58:724S-32S. | ||
+ | <br> | ||
+ | <br> | ||
+ | <p class="textojustif"> Jana S & Deb JK (2005) Strategies for efficient production of heterologous proteins in <i>Escherichia coli</i>. Appl Microbiol Biotechnol 67: 289–298. | ||
<br> | <br> | ||
<br> | <br> | ||
Line 617: | Line 627: | ||
<br> | <br> | ||
<p class="textojustif"> Lee SH, Choi JI, Park SJ, Lee SY & Park BC. (2004) Display of Bacterial Lipase on the <i>Escherichia coli</i> Cell Surface by Using FadL as an Anchoring Motif and Use of the Enzyme in Enantioselective Biocatalysis. Applied and Environmental Microbiolgy. Vol. 70, No. 9 p. 5074–5080 | <p class="textojustif"> Lee SH, Choi JI, Park SJ, Lee SY & Park BC. (2004) Display of Bacterial Lipase on the <i>Escherichia coli</i> Cell Surface by Using FadL as an Anchoring Motif and Use of the Enzyme in Enantioselective Biocatalysis. Applied and Environmental Microbiolgy. Vol. 70, No. 9 p. 5074–5080 | ||
+ | <br> | ||
+ | <br> | ||
+ | <p class="textojustif"> Rogers PL, Lee KJ, Skotnicki ML & Tribe DE (1982), Ethanol production by Zymomonas mobilis. Adv. Biochem. Engg. Biotechnol Vol 23:37-84. | ||
<br> | <br> | ||
<br> | <br> | ||
Line 622: | Line 635: | ||
<br> | <br> | ||
<br> | <br> | ||
- | <p class="textojustif"> | + | <p class="textojustif"> Swings J & De Ley J (1977) The biology of Zymomonas. Bacteriol Rev. Vol.41:1-46. |
<br> | <br> | ||
<br> | <br> |