Team:Penn State/Lab
From 2011.igem.org
Line 41: | Line 41: | ||
color: #666; | color: #666; | ||
font-size: 12px; | font-size: 12px; | ||
+ | text-alight:left; | ||
} | } | ||
a:link, a:visited, a:hover {font-family: "Lucida Grande", Tahoma; | a:link, a:visited, a:hover {font-family: "Lucida Grande", Tahoma; |
Revision as of 20:55, 26 September 2011
Abstract
Ionizing radiation and radiation pollution is an important environmental problem that not only affects those working around radiation facilities, but those dealing with the aftermath of widespread nuclear disasters such as those at the Fukushima Daiichi nuclear reactor or the Chernobyl reactor. Penn State’s team project will focus on using a genetic circuit introduced into E. coli bacterial cells, in order to rapidly detect and report the presence of harmful ionizing radiation. We are working to develop a robust and reliable biosensor which utilizes the lambda phage lytic-lysogenic switch coupled with a fast-acting reporter capable of producing an easily visible effect. We believe that the final construct may have the potential to rival current radiation detection methods, such as digital dosimeters. Our hope is that the basis of our biological dosimeter system will prove to be an effective genetic system capable of detecting harmful levels of radiation and relaying it to those working in the field or affected area. We envision our system not only being useful in such applications, but also being capable of further expansion and evolution through the expanding field of synthetic biology.
.Overall project: Bacterial Dosimeter
Radiation of one form or another is a constant presence throughout our every day lives. Radiation, or the transmission and absorption of energy over a given distance, has proven an invaluable technology useful in applications for everything from heating our food to diagnosing and treating diseases. Some forms of radiation, however, can be detrimental to the human body, as they are a common cause of such diseases as radiation poisoning and cancer. All types of radiation can be divided into two categories: non-ionizing and ionizing. Non-ionizing radiation (consisting of radio, micro, infrared, and visible electromagnetic waves) contains less energy and has a relatively small effect on living organisms that has only recently been studied. Ionizing radiation, however, contains a much greater amount of energy capable of ionizing atoms which can lead to harmful effects on living tissue. This category of radiation encompasses alpha and beta decay as well as neutron, X-ray, and gamma radiation.
Our project focuses on detecting the degradation and damage of DNA associated with ionizing radiation. The initial proposed design is shown below. It consists of two parts: a sensor based on a lambda phage bistable switch, and a fast-acting reporter similar to the reporter designed by the Imperial College of London 2010 iGEM team.
Click on the links below to view more about each part of our project
.Assembly
assembly things here
The Lab Notebook
.RecA Notebook Sensor Notebook Reporter Notebook .
The Lab Protocols
Click Here for Descriptions of our Protocols .Safety
Would any of your project ideas raise safety issues in terms of researcher safety, public safety, and/or environmental safety?
The researcher is not being exposed to any sort of biological element that would cause serious harm to him or her in anyway. The strand of E. coli being utilized in our project would not be resilient in the human body, should contamination occur. Thus, there is very little risk of infection from our bacteria. All other researcher activities use standard biological engineering and molecular biology protocols and methods that pose little harm to the researcher when proper safety precautions are observed. Some testing involving radiation is involved, but that testing would be done independently of our research group in a controlled facility. Our project idea could actually promote public and environmental safety, if successful. Practical use of this project would help to ensure that radiation levels within a certain area is not within dangerous levels able to cause serious harm to a person. This helps to promote public safety such that people can be told to stay away from certain areas that have high levels of radiation easily.
Do any of the new BioBrick parts (or devices that you made this year raise any safety issues? If yes, did you document these issues in the Registry, how did you manage to handle the safety issue, and how could other teams learn from your experience?
Any new BioBrick parts for our team do not raise any immediate safety concerns, and so none are listed as such in the registry. However, should the idea behind our project become a reality, some concerns as to containment of our genetically engineered strains of ''E. coli'' should be addressed. If our bacterial dosimeter is to be used in the field proper safety and handling issues should be dealt with and are being factored into the design of our device.
Is there a local biosafety group, committee, or review board at your institution?
Yes, there are local biosafety groups at our institution, Environmental Health and Safety department at Penn State. This department is responsible for all safety aspects relating to environmental protection, occupational Healthy and Safety, and Radiation Protection. All researchers were required to attend a safety training program that informed us of lab safety procedures with regards to chemicals and biological hazards. The session was very helpful in providing safety information to our team. Additionally, our team was required to submit a research proposal to a review committee called the Institutional Biosafety Committee, or IBC. This committee is responsible for research approval, advocating research safety, and promoting University research for commercial application. Our project idea was submitted to the committee for approval.
Do you have any other ideas how to deal with safety issues that could be useful for future iGEM competitions? How could parts, devices, and systems be made even safer through biosafety engineering?
To further enhance safety practices in the lab, all iGEM participants should be required to fulfill a safety requirement that is common to everyone. That way, standards to safety education can be determined and implemented that would ensure safe practices of all teams. A video lecture, developed by iGEM, should be made for all iGEM teams to watch. Then, once the video has been finished, a short quiz assessment should be filled to make sure that all researcher are knowledgeable on the procedures that video discusses. Environmental Health and Safety has done a similar type of safety education program for our researchers. Certificate of completion is available for all of the iGEM the team members.