Team:Minnesota/Protocols
From 2011.igem.org
(Difference between revisions)
NathanDavis (Talk | contribs) |
NathanDavis (Talk | contribs) |
||
Line 139: | Line 139: | ||
# Prepare a solution of 100 mM tetramethyl orthosilicate (TMOS) in 1 mM HCl to prepare prehydrolyzed silica particles. Stir at room temperature for 15 minutes to completely hydrolyze TMOS to silica monomers. | # Prepare a solution of 100 mM tetramethyl orthosilicate (TMOS) in 1 mM HCl to prepare prehydrolyzed silica particles. Stir at room temperature for 15 minutes to completely hydrolyze TMOS to silica monomers. | ||
# Prepare two reactions: | # Prepare two reactions: | ||
- | + | {| style="margin-left: 40px;" class="wikitable" | |
- | {| class="wikitable" | + | |
|- | |- | ||
! Reaction/Reagent | ! Reaction/Reagent | ||
Line 154: | Line 153: | ||
| 0 ng | | 0 ng | ||
|} | |} | ||
- | |||
# Incubate at NIST standard temperature and pressure (1 atm, 20 ºC) for 2 hours. | # Incubate at NIST standard temperature and pressure (1 atm, 20 ºC) for 2 hours. | ||
# Centrifuge sample (3,000 x g for 5 minutes) to precipitate polymerized silica partciles. | # Centrifuge sample (3,000 x g for 5 minutes) to precipitate polymerized silica partciles. | ||
Line 160: | Line 158: | ||
# Wash 3 times with distilled H2O to remove free, hydrolyzed TMOS. | # Wash 3 times with distilled H2O to remove free, hydrolyzed TMOS. | ||
# Aliquot the unreacted hydrolyzed TMOS remaining in solution after silica aggregation. | # Aliquot the unreacted hydrolyzed TMOS remaining in solution after silica aggregation. | ||
- | + | #: a) Treat with 2 M NaOH for 1 hour at 80 ºC to ensure complete hydrolysis of silica particles to monomer/dimer state. | |
# Remove aliquots of 10 μl and add to solution of 15 mL water and 1.5 mL of acidic solution of ammonium molybdate (20 g (NH4)6Mo7O24•4 H2O and 60 mL of concentrated Hcl [36%]). | # Remove aliquots of 10 μl and add to solution of 15 mL water and 1.5 mL of acidic solution of ammonium molybdate (20 g (NH4)6Mo7O24•4 H2O and 60 mL of concentrated Hcl [36%]). | ||
# Incubate at NIST standard temperature and pressure for 20 minutes. Solution should have a yellowish hue after incubation. | # Incubate at NIST standard temperature and pressure for 20 minutes. Solution should have a yellowish hue after incubation. | ||
# Add 8 mL of reducing agent Metol to solution. Solution should turn a bluish color. | # Add 8 mL of reducing agent Metol to solution. Solution should turn a bluish color. | ||
# Record absorbance at 810 nm and compare to standard curve. | # Record absorbance at 810 nm and compare to standard curve. |
Revision as of 21:01, 25 September 2011
Home | Team | Project | Software | Protocols | Notebook | Attributions | Safety |
---|
Contents |
Antibiotics
Prepare stock solutions of antibiotics for adding to media (1 µL per 1 mL)
- Ampicillin 100 mg/mL in water
- Chloramphenicol 50 mg/mL in ethanol
- Kanamycin 30 mg/mL in water
Media Preparation
LB media
- 10 g/L Tryptone
- 5 g/L NaCl
- 5 g/L Yeast Extract
- 15 g/L Agar (solid media only)
- One sleeve (20 plates) can be made with 600 mL of solid media (autoclave, cool, and add antibiotics before pouring)
- One rack (72 16x100 mm tubes with 4 mL) can be made with 300 mL of liquid media (autoclave after pouring)
SOC media
- 20 g/L Tryptone
- 5 g/L Yeast Extract
- 0.5 g/L NaCl
- 950 mL/L ddH2O
- pH to 7.0, autoclave, cool, and add the following
- 5 mL/L 2M MgCl2 (filter sterilize)
- 20 ml/L 20 mM Glucose Final Concentration* (Add 0.018 g/mL and filter sterilize)
TSS Method for Competent Cell Preparation
TSS Solution
- Use the following recipe to make 100 mL:
- PEG 4000 15 g
- 1 M MgCl2-solution 5 mL
- LB liquid media add to 95 mL
- DMSO 5 mL (add after autoclaving)
- Adjust pH to 6.5 prior to autoclaving.
- After addition of DMSO aliquot TSS solution in 10 – 15 mL portions and store at –20 0C (TSS can get contaminated very quickly).
Competent Cell Preparation
- Cultivate overnight E. coli culture* (*LB, add appropriate antibiotics if competent cells containing a plasmid for co-transformation are required) to inoculate main culture* 1:100 with overnight culture.
- Note: 50 mL culture will give 10 aliquots of competent cells, Use larger culture volumes (e.g. 100 mL) to prepare more aliquots.
- Grow main culture at 37 0C and 260 rpm to ensure rapid growth to OD 0.4 – 0.6 (typically 2 – 3 hours, fast growing cells to OD 0.4 reach highest transformation efficiencies)
- Centrifuge cells for 10 min at 4000 rpm (4 0C)
- Carefully resuspend cell pellet in cold (4 0C) TSS solution (2 mL TSS for each 50 mL culture volume).
- Incubate resuspended cells for 5 min on ice and aliquot 200 µL competent cells in 15 mL sterile tubes.
- Note: Handle cells carefully and keep them always on ice as they get very fragile during the TSS treatment.
- Shock-freeze aliquoted cells in liquid nitrogen and store cells at –80 0C.
Restriction Digest
- Prepare the following reaction mixture for a double digest:
- 3 µL Appropriate 10X Buffer (choose to maximize activity efficiencies)
- 1 µL Restriction Enzymes (two, 1 µL each)
- 10 µL Template DNA with compatible restriction sites
- 16 µL ddH2O
- Allow reaction to incubate for >2 hours or overnight at 37 0C
- Inactive restriction endonucleases by heating at 65 0C for 10 min
- Check results on agarose gel
- Isolate DNA from appropriate sized band with gel purification kit (Invitrogen or GE)
Ligation
- Prepare the following reaction mixture:
- 2 µL Ligase Buffer
- 1 µL T4 Ligase
- 5 µL Plasmid (Cut with restriction enzymes)
- 12 µL Insert (Flanked with restriction sits compatible with plasmid and cut with them)
- Allow reaction to incubate overnight at room temperature
- Transform reaction mixture
Primer Design
- Primers are the 5’ ends of the sequence to be amplified by PCR
- Choose primers that have similar melting temperatures (Tm) that are between 50 0C and 65 0C
- Choose primers that have low complementation with sequence of interest
- Restriction sites are normally introduced to the 5’ end of primers to aid assembly into vectors (BglII and NotI for BioBrick vectors)
- Include a G or C nucleotide at the 3’ end
- Primer sequences are reported and ordered in 5’ to 3’ direction
- Reconstitute primer in 10 µL for every nmol reported on tube (100 pmol/µL final concentration)
Polymerase Chain Reaction
- Prepare reaction mixture in 200 µL PCR Tubes with following recipe:
- 1 µL Template DNA
- 1 µL Each primer (Forward and Reverse)
- 5 µL 10X Thermopol Buffer
- 1 µL 10 mM dNTPs
- 2.5 µL 10 mM MgSO4
- 0.5 µL DNA Polymerase (Taq or Vent)
- 38 µL of Water to bring final volume to 50 µL
- Program themocycler with the following:
- Initial Denaturation 5 min 95 0C
- Repeat 25 times
**Denaturation 30 sec 95 0C **Annealing 30 sec >3 0C below lowest primer Tm **Extention 1 min per 1 Kb 72 0C **Final Extention 5 min 72 0C **Storage ∞ 4 0C
- Check reaction with 1% agarose gel (0.01 g/mL) in TAE buffer
- Use 2% agarose gel when checking fragments <500 bp
- If necessary, purify DNA using agarose gel purification kit
Transformation
- Thaw competent cells at room temperature on ice
- Add 1 µL of plasmid DNA or ligation reaction mixture to cells
- Incubate on ice for 20 min
- Heat shock at 43 0C for 40 sec
- Add 800 µL of SOC to cells
- Incubate at 37 0C for 1 hour
- Plate 50 µL of culture or for ligations, spin down, remove 900 µL media, resuspend cells, and plate on solid media with appropriate antibiotic
- Incubate at 37 0C for >18 hours
- Pick colonies and transfer to 4 mL cultures with appropriate antibiotic (add antibiotic to liquid LB before cells)
- Incubate at 37 0C for >18 hours
- Use Miniprep kit (made by Promega) to purify plasmid DNA from overnight culture
Sequencing
- Sequencing is conducted by the University of Minnesota Biomedical Genomic Center
- Make 1:100 dilution (1 pmol/µL) of stock primers for sequencing purposes
- Prepare the following mixture in 0.5 mL microcentrifuge tube:
- 4 µL diluted primer
- X µL Template DNA in vector (100 ng per Kb template, X = 100 x n Kb/DNA concentration (ng/µL))
- Y µL Sterile water to reach final volume of 13 µL
- Name sequencing reaction with 3 letter prefix plus next highest unused number (ex. GEM01)
240px | |
Silicatein Activity Assay
- Prepare a solution of 100 mM tetramethyl orthosilicate (TMOS) in 1 mM HCl to prepare prehydrolyzed silica particles. Stir at room temperature for 15 minutes to completely hydrolyze TMOS to silica monomers.
- Prepare two reactions:
Reaction/Reagent | Prehydrolyzed TMOS Solution | Silicatein |
---|---|---|
Assay | 1 mL | 200 ng |
Negative Control | 1 mL | 0 ng |
- Incubate at NIST standard temperature and pressure (1 atm, 20 ºC) for 2 hours.
- Centrifuge sample (3,000 x g for 5 minutes) to precipitate polymerized silica partciles.
- Decant supernatant containing unaggregated silica particles.
- Wash 3 times with distilled H2O to remove free, hydrolyzed TMOS.
- Aliquot the unreacted hydrolyzed TMOS remaining in solution after silica aggregation.
- a) Treat with 2 M NaOH for 1 hour at 80 ºC to ensure complete hydrolysis of silica particles to monomer/dimer state.
- Remove aliquots of 10 μl and add to solution of 15 mL water and 1.5 mL of acidic solution of ammonium molybdate (20 g (NH4)6Mo7O24•4 H2O and 60 mL of concentrated Hcl [36%]).
- Incubate at NIST standard temperature and pressure for 20 minutes. Solution should have a yellowish hue after incubation.
- Add 8 mL of reducing agent Metol to solution. Solution should turn a bluish color.
- Record absorbance at 810 nm and compare to standard curve.