Team:Freiburg/Description

From 2011.igem.org

(Difference between revisions)
(Precipitator)
(Green light receptor)
Line 80: Line 80:
To be fully functional CcaS has to bind the chromophore Phycocyanobilin (PCB) with its GAF-domain.  
To be fully functional CcaS has to bind the chromophore Phycocyanobilin (PCB) with its GAF-domain.  
The GAF domain in this system has the ligation motif Cys-Leu, instead of the usual plant GAF-domain with Cys-His.
The GAF domain in this system has the ligation motif Cys-Leu, instead of the usual plant GAF-domain with Cys-His.
 +
{| style="color:black; background-color:lightgrey;" cellpadding="10%" cellpadding="15%" cellspacing="0" border="1" align="right"
{| style="color:black; background-color:lightgrey;" cellpadding="10%" cellpadding="15%" cellspacing="0" border="1" align="right"
|[[File:Green light system.jpg|350px]]
|[[File:Green light system.jpg|350px]]
Line 88: Line 89:
After light of the wavelength of 532 nm is exposed to the CcaS receptor, it changes its conformation. It undergoes autophosphorylation and the phosphate is transfered to the response regulator CcaR. Once phosphorylated, CcaR can bind to the specific promoter region of cpcG and activate gene expression.
After light of the wavelength of 532 nm is exposed to the CcaS receptor, it changes its conformation. It undergoes autophosphorylation and the phosphate is transfered to the response regulator CcaR. Once phosphorylated, CcaR can bind to the specific promoter region of cpcG and activate gene expression.
-
 
-
 
As the green light sensing system from the cyanobacteria ''Synechocystis sp.'' PCC6803  was proven by J. J. Tabor to work also in ''E. coli'', our plan is to integrate the genes for CcaS and CcaR into ''E. coli'' genome with a BAC (bacterial artificial chromosome). The researchers gene of interest just needs to be inserted behind the cpcG2 promoter region and transferred into "our" ''E .coli'' strain to become green light inducible.
As the green light sensing system from the cyanobacteria ''Synechocystis sp.'' PCC6803  was proven by J. J. Tabor to work also in ''E. coli'', our plan is to integrate the genes for CcaS and CcaR into ''E. coli'' genome with a BAC (bacterial artificial chromosome). The researchers gene of interest just needs to be inserted behind the cpcG2 promoter region and transferred into "our" ''E .coli'' strain to become green light inducible.
<br/>
<br/>
-
 
+
{| style="color:black; background-color:lightgrey;" cellpadding="10%" cellpadding="15%" cellspacing="0" border="1" align="left"
-
{| style="color:black; background-color:lightgrey;" cellpadding="10%" cellpadding="15%" cellspacing="0" border="1" align="right"
+
|[[File:Freiburg2011_greenlight_DNA.jpg|600px]]
-
[[File:Freiburg2011_greenlight_DNA.jpg|600px]]
+
Green light system
Green light system
|}
|}

Revision as of 03:27, 22 September 2011


This is the wiki page
of the Freiburger student
team competing for iGEM 2011.
Thank you for your interest!