Team:Wageningen UR/Project/Applications
From 2011.igem.org
(→Synchroscillator: Possible Applications) |
(→Synchroscillator: Possible Applications) |
||
Line 29: | Line 29: | ||
Using the oscillating system, it is possible to have gene A oscillating and at the same time look at what happens to the other genes B, C & D through time. If it appears that gene B shows changes in its expression level pattern or protein concentration pattern and genes C & D do not show a difference compared to the normal situation whilst gene A is oscillating, it means that there is hard evidence for the fact that gene A is interacting with gene B and not with gene C & D. | Using the oscillating system, it is possible to have gene A oscillating and at the same time look at what happens to the other genes B, C & D through time. If it appears that gene B shows changes in its expression level pattern or protein concentration pattern and genes C & D do not show a difference compared to the normal situation whilst gene A is oscillating, it means that there is hard evidence for the fact that gene A is interacting with gene B and not with gene C & D. | ||
- | As there are some genes that cannot be knocked out, because without it the organism cannot survive, the use of knock-outs is limited. The oscillating system can get the expression level of crucial gene E very low at certain time points while it makes up for the loss at other time points where it is over-expressed. This means that, by looking at changing expression patterns of other genes over time, it is possible to get interactional information for gene E that until now was very hard to study. | + | As there are some genes that cannot be knocked out, because without it the organism cannot survive, the use of knock-outs is limited. The oscillating system can get the expression level of a crucial gene E very low at certain time points while it makes up for the loss at other time points where it is over-expressed. This means that, by looking at changing expression patterns of other genes over time, it is possible to get interactional information for gene E that until now was very hard to study. |
Next to that, using the oscillating system, it would be possible to look at rates of interaction between genes. Imagine that gene B is regulated by gene A, which is oscillating. If the interaction speed between A & B would be extremely fast, it might be possible that gene B starts oscillating together with gene A. There should be a delay however. By looking at this delay and the resulting pattern of gene B, conclusions can be drawn about the rate of interaction between both genes. | Next to that, using the oscillating system, it would be possible to look at rates of interaction between genes. Imagine that gene B is regulated by gene A, which is oscillating. If the interaction speed between A & B would be extremely fast, it might be possible that gene B starts oscillating together with gene A. There should be a delay however. By looking at this delay and the resulting pattern of gene B, conclusions can be drawn about the rate of interaction between both genes. |
Revision as of 01:22, 22 September 2011