Team:Lethbridge/Project
From 2011.igem.org
Liszabruder (Talk | contribs) |
Liszabruder (Talk | contribs) |
||
Line 44: | Line 44: | ||
===Catechol as the entry point into <i>Escherichia coli</i> metabolism=== | ===Catechol as the entry point into <i>Escherichia coli</i> metabolism=== | ||
- | To address the decontamination of (1) toxic organic compounds such as naphthene and catechol found in the tailings ponds, natural pathways that can break down the toxic chemicals can be utilized. The toxic organic compounds can be broken down into molecules that are metabolizable by all organisms, such as 2-hydroxymuconic semialdehyde (2-HMS)<sup>3</sup>. Catechol is a prime candidate to function as a hub for the funneling and subsequent degradation of other toxic compounds found in abundance, such as naphthene, anthracene, and fluorene into 2-HMS (Figure 1)<sup>3,4,5</sup>. Catechol 2,3-dioxygenase (xylE) is found in Pseudomonas putida and hydrolyzes catechol into 2-HMS, which can enter the citric acid cycle<sup>6</sup>. In 2010, the | + | To address the decontamination of (1) toxic organic compounds such as naphthene and catechol found in the tailings ponds, natural pathways that can break down the toxic chemicals can be utilized. The toxic organic compounds can be broken down into molecules that are metabolizable by all organisms, such as 2-hydroxymuconic semialdehyde (2-HMS)<sup>3</sup>. Catechol is a prime candidate to function as a hub for the funneling and subsequent degradation of other toxic compounds found in abundance, such as naphthene, anthracene, and fluorene into 2-HMS (Figure 1)<sup>3,4,5</sup>. Catechol 2,3-dioxygenase (xylE) is found in Pseudomonas putida and hydrolyzes catechol into 2-HMS, which can enter the citric acid cycle<sup>6</sup>. In 2010, the Lethbridge iGEM team confirmed that xylE when introduce to <i>E. coli</i> hydrolyzes catechol to 2-HMS demonstrating and that this critical step can successfully be performed to convert toxic chemicals to metabolic intermediates<sup>7</sup>. XylE is inefficient on its own, especially in vitro, due to instability caused by oxygen sensitivity, and oxidation of the active site iron molecule during it’s functional cycle rendering the enzyme inactive<sup>8</sup>. It was demonstrated by the Lethbridge 2010 iGEM team that xylE only exhibits single turnover kinetics, and therefore, each protein molecule is capable of hydrolyzing only one molecule of catechol<sup>7</sup>. In natural systems, the xylT gene is located upstream of xylE. XylT codes for a ferredoxin protein (xylT) that stabilizes xylE by reducing the iron molecule back to its previous active state, allowing xylE to continue degrading catechol<sup>9</sup>. Creating a multiple turnover system would allow one protein to degrade multiple catechol molecules thereby increasing the efficiency of the system while increasing potential real-world applications. We have performed a computational metabolic flux analysis to determine possible bottlenecks and choke points in the feeding of 2-HMS into the citric acid cycle. The results indicated that the bottleneck in the pathway is not located in the citric acid cycle but in the breakdown of 2-HMS by the native <i>E. coli</i> enzyme xylF, indicating another step that can be used to optimize the catechol degradation system (Figure 1)<sup>10</sup>. |
<html> | <html> | ||
Line 70: | Line 70: | ||
===Compartmentalization for optimization=== | ===Compartmentalization for optimization=== | ||
- | Compartmentalization is a method that can serve to optimize systems and can be applied to the decontamination of toxins from the tailings ponds. Localizing proteins of a pathway together will decrease cross-talk with other systems and concentrate the proteins of interest in close proximity. Lumazine synthase (LS) from <i>Aquifex aeolicus</i> forms icosahedral microcompartment (MC) assemblies of 60 or 180 monomeric units that self assemble and are capable of isolating proteins from their local environment<sup>11</sup>. As shown in previously published work, the LS protein has been mutated so that the interior of the MC is negatively charged, and the | + | Compartmentalization is a method that can serve to optimize systems and can be applied to the decontamination of toxins from the tailings ponds. Localizing proteins of a pathway together will decrease cross-talk with other systems and concentrate the proteins of interest in close proximity. Lumazine synthase (LS) from <i>Aquifex aeolicus</i> forms icosahedral microcompartment (MC) assemblies of 60 or 180 monomeric units that self assemble and are capable of isolating proteins from their local environment<sup>11</sup>. As shown in previously published work, the LS protein has been mutated so that the interior of the MC is negatively charged, and the Lethbridge 2009 iGEM team has submitted the mutated LS gene to the parts registry<sup>11</sup>. A negatively charged interior allows for preferential compartmentalization of positively charged molecules, which can easily be engineered through the addition of a poly-arginine tag to a target protein<sup>11</sup>. The poly-arginine C- and N-terminal tags have also been submitted to the registry by the Lethbridge 2009 iGEM team. Recent work on LS using directed evolution to optimize the interior surface of the MC created a new variant of LS that allows for the increased loading capacity of the MC<sup>12</sup>. It has been found that this LS variant can successfully encapsulate toxic compounds within <i>E. coli</i> cells without nonspecific association of contaminants or target molecules to the exterior of the MC<sup>12</sup>. This LS variant will be advantageous for selective compartmentalization of larger or multiple target proteins involved in catechol degradation. Compartmentalization will also allow for the introduction of pathways that may contain toxic intermediates to the chassis, while keeping them separate from the chassis’ other processes. |
===Removal of aqueous heavy metals=== | ===Removal of aqueous heavy metals=== | ||
- | Decontamination of (2) heavy metals found in the tailings ponds can be performed by the mms6 protein found in <i>Magnetospirillum magneticum</i> that produces nanoparticles<sup>13,14</sup>. Mms6 can facilitate the removal of iron from tailings ponds water through the formation of symmetric octahedral iron crystal nanoparticles<sup>15</sup>. The production of nanoparticles from soluble heavy metals will effectively remove the heavy metals from the tailings ponds with subsequent removal of the magnetic nanoparticles using simple methods such as a magnet<sup>13</sup>. Previous work done by the | + | Decontamination of (2) heavy metals found in the tailings ponds can be performed by the mms6 protein found in <i>Magnetospirillum magneticum</i> that produces nanoparticles<sup>13,14</sup>. Mms6 can facilitate the removal of iron from tailings ponds water through the formation of symmetric octahedral iron crystal nanoparticles<sup>15</sup>. The production of nanoparticles from soluble heavy metals will effectively remove the heavy metals from the tailings ponds with subsequent removal of the magnetic nanoparticles using simple methods such as a magnet<sup>13</sup>. Previous work done by the Lethbridge 2010 iGEM team on the Mms6 protein demonstrated that the expression of mms6 induced low cell growth rates and low expression levels, indicating that the protein is toxic to the <i>E. coli</i> chassis<sup>16</sup>. A method to circumvent the toxic protein problem for the chassis is to have the protein secreted from the cell to prevent accumulation within the cell. |
===Accelerating clay particle sedimentation=== | ===Accelerating clay particle sedimentation=== | ||
Line 84: | Line 84: | ||
The overall goal of the project is to produce a prototype tailings ponds clean up kit (Figure 2). The tailings ponds clean up kit will decontaminate (1) toxic organic molecules, (2) heavy metals, (3) remove the clay sediment, and (4) prevent GMO’s DNA contamination of the environment. The kit will allow for an efficient and environmentally friendly method of tailings ponds remediation. The methods used will also be applicable for large-scale treatment facilities to treat the tailings water before it is deposited in ponds thereby decreasing their negative environmental impact. | The overall goal of the project is to produce a prototype tailings ponds clean up kit (Figure 2). The tailings ponds clean up kit will decontaminate (1) toxic organic molecules, (2) heavy metals, (3) remove the clay sediment, and (4) prevent GMO’s DNA contamination of the environment. The kit will allow for an efficient and environmentally friendly method of tailings ponds remediation. The methods used will also be applicable for large-scale treatment facilities to treat the tailings water before it is deposited in ponds thereby decreasing their negative environmental impact. | ||
<br><br> | <br><br> | ||
- | (1) Our aim is to produce optimized enzymes found in nature that will decontaminate toxic organic molecules found in the tailings ponds. In order to do so, we will further characterize and optimize the project started by the | + | (1) Our aim is to produce optimized enzymes found in nature that will decontaminate toxic organic molecules found in the tailings ponds. In order to do so, we will further characterize and optimize the project started by the Lethbridge 2010 iGEM team that focused on converting toxins in the tailings ponds into compounds that cells can metabolize. To optimize the system, we will introduce additional enzymes that will improve the efficiency of degradation and increase the degradation capabilities of the current toxin-degrading enzyme, based on our metabolic flux analysis. Further optimization will be performed by isolating the new two-enzyme system in compartments that will prevent their interaction with other naturally occurring systems and allow for their isolation and application to the tailings ponds. |
<br><br> | <br><br> | ||
- | (2) Our aim is to use enzymes already present in nature for removing the heavy metals found in tailings ponds by for example, magnetic nanoparticle formation. We will do this by working with the enzyme submitted by the | + | (2) Our aim is to use enzymes already present in nature for removing the heavy metals found in tailings ponds by for example, magnetic nanoparticle formation. We will do this by working with the enzyme submitted by the Lethbridge 2009 iGEM team and optimizing its production conditions to allow for maximal removal of toxic heavy metals. |
<br><br> | <br><br> | ||
(3) Our aim is to rapidly form sediment composed of the fine clay particles found in the tailings ponds by using the natural properties of bacterial cells to form aggregates. The engineered bacterial cell will have the properties required to attach to and form sediment with the fine clay particles found in the tailings ponds. This system will allow for rapid clay particle removal from the tailings ponds by increasing the rate of sedimentation of the clay particles by adding biomass and aggregations in situ or in a treatment facility. | (3) Our aim is to rapidly form sediment composed of the fine clay particles found in the tailings ponds by using the natural properties of bacterial cells to form aggregates. The engineered bacterial cell will have the properties required to attach to and form sediment with the fine clay particles found in the tailings ponds. This system will allow for rapid clay particle removal from the tailings ponds by increasing the rate of sedimentation of the clay particles by adding biomass and aggregations in situ or in a treatment facility. | ||
Line 116: | Line 116: | ||
==Research Design and Methods== | ==Research Design and Methods== | ||
- | (1) Degradation of toxic organic molecules found within the tailings ponds will be achieved by optimizing the system characterized by the | + | (1) Degradation of toxic organic molecules found within the tailings ponds will be achieved by optimizing the system characterized by the Lethbridge 2010 iGEM team. The Lethbridge 2010 iGEM team demonstrated that the degradation of catechol to 2-HMS by xylE is successful using <i>E. coli</i> as the chassis<sup>7</sup>. The same spectroscopy methods used to characterize xylE will be used to detect the production of 2-HMS – an easily detectable compound due to its yellow colour – in the presence or absence of xylT as a measure of catechol degradation. To further optimize the xylE/xylT system, compartmentalization of the proteins into biological MCs will also be performed. Close proximity of xylE and xylT within the MC will facilitate rapid reactivation of xylE by xylT, increasing the efficiency of catechol degradation. |
<br><br> | <br><br> | ||
- | The protein, lumazine synthase (LS), will be used for compartmentalization of xylE and xylT. To target xylE and xylT into the negative interior of the LS MC, a positively charged poly-arginine tag will be used. However, the positive tag may impair the function of the target protein, xylE or xylT, depending on its position at the N-terminus or C-terminus. It has been demonstrated that adding a poly-arginine tag to the C-terminus of a protein does not affect its function, while an N-terminal tag may significantly reduce a protein’s activity22. The | + | The protein, lumazine synthase (LS), will be used for compartmentalization of xylE and xylT. To target xylE and xylT into the negative interior of the LS MC, a positively charged poly-arginine tag will be used. However, the positive tag may impair the function of the target protein, xylE or xylT, depending on its position at the N-terminus or C-terminus. It has been demonstrated that adding a poly-arginine tag to the C-terminus of a protein does not affect its function, while an N-terminal tag may significantly reduce a protein’s activity22. The Lethbridge 2010 iGEM team confirmed this by individually tagging the N- and C-termini of both cyan and yellow fluorescent protein (CFP and YFP, respectively) and demonstrated that the N-terminally tagged proteins were inactive. Together, CFP and YFP are a well known fluorescence resonance energy transfer (FRET) pair that will be used as a proof-of-principle demonstrating successful co-localization in the LS MC. FRET is a distance dependent phenomenon that involves the transfer of energy from an excited donor fluorophore to an acceptor fluorophore and results in a decrease in the fluorescence signal from the donor coupled to an increase in the fluorescence signal from the acceptor when the fluorophores are in close proximity. |
<br><br> | <br><br> | ||
With successful co-localization demonstrated using the CFP/YFP FRET system, optimized conditions will be used to co-localize xylE and xylT within the MC. BioBricks for xylE, xylT, and both N- and C-terminal poly-arginine tagged xylE and xylT will be assembled into constructs, tested, and submitted to the parts registry. The activity of the tagged xylE and xylT proteins will be compared to that of the wild type xylE and xylT, respectively, using spectroscopy methods. A final BioBrick construct containing LS and tagged versions of xylE and xylT will be assembled to test localization of the proteins within the MC. A simple assay to verify co-localization will be to use gradient centrifugation to isolate the LS MC followed by SDS-PAGE with markers for LS, xylE, and xylT. Co-localization will be successful if all three proteins of the LS MC purification are visualized by SDS-PAGE and extracellular application of the MC will also be tested. | With successful co-localization demonstrated using the CFP/YFP FRET system, optimized conditions will be used to co-localize xylE and xylT within the MC. BioBricks for xylE, xylT, and both N- and C-terminal poly-arginine tagged xylE and xylT will be assembled into constructs, tested, and submitted to the parts registry. The activity of the tagged xylE and xylT proteins will be compared to that of the wild type xylE and xylT, respectively, using spectroscopy methods. A final BioBrick construct containing LS and tagged versions of xylE and xylT will be assembled to test localization of the proteins within the MC. A simple assay to verify co-localization will be to use gradient centrifugation to isolate the LS MC followed by SDS-PAGE with markers for LS, xylE, and xylT. Co-localization will be successful if all three proteins of the LS MC purification are visualized by SDS-PAGE and extracellular application of the MC will also be tested. | ||
<br><br> | <br><br> | ||
- | (2) Decontamination of heavy metals found in the tailings ponds will be performed using tools already found in nature. The bacteria <i>M. magneticum</i> produce the protein Mms6, which possesses the ability to reduce heavy metals into magnetic nanoparticles<sup>23</sup>. Further work will now be done to characterize the formation of the magnetic nanoparticle from the Mms6 BioBrick found in the registry. Expression conditions of Mms6 in vivo will be optimized, exploring conditions such as iron concentration and Mms6 cellular localization. To investigate the effect of Mms6 over-expression in different cellular locations, signal sequences can be used to facilitate targeting of Mms6 to the periplasm or its secretion out of the cell. Four signal sequences are available in the registry that were submitted by the | + | (2) Decontamination of heavy metals found in the tailings ponds will be performed using tools already found in nature. The bacteria <i>M. magneticum</i> produce the protein Mms6, which possesses the ability to reduce heavy metals into magnetic nanoparticles<sup>23</sup>. Further work will now be done to characterize the formation of the magnetic nanoparticle from the Mms6 BioBrick found in the registry. Expression conditions of Mms6 in vivo will be optimized, exploring conditions such as iron concentration and Mms6 cellular localization. To investigate the effect of Mms6 over-expression in different cellular locations, signal sequences can be used to facilitate targeting of Mms6 to the periplasm or its secretion out of the cell. Four signal sequences are available in the registry that were submitted by the Lethbridge 2010 iGEM team and will be added to the mms6 gene construct to control localization of the over-expressed protein product. Cell growth rates are easily tracked through absorbance measures of cell cultures, and over-expression of Mms6 can be verified by SDS-PAGE. Since cell growth rates can be slowed when under metal ion stress, removing aqueous metals via nanoparticle formation will have an added benefit of improving cell viability while decreasing heavy metal ion stress in the tailings ponds. |
<br><br> | <br><br> | ||
(3) Sedimentation of clay particles found in the tailings ponds can be accelerated by the use of naturally occurring polysaccharides found on the surface of bacterial cell membranes that bind clay particles and form aggregates<sup>18</sup>. The cell-clay aggregates can then form sediments using Antigen 43 (Ag43). Ag43 is an autotransporter that promotes bacterial cell-to-cell aggregation, which accelerates sedimentation rates<sup>19</sup>. The Peking 2010 iGEM team successfully characterized Ag43 in the <i>E. coli</i> chassis. We will take advantage of native <i>E. coli</i> surface polysaccharides’ clay-binding properties and use them in conjunction with Ag43 to efficiently settle clay particles more rapidly than the current conventional methods. The team will introduce Ag43 into <i>E. coli</i> and apply the bacteria to a clay solution. The bacteria will aggregate the clay and form sediment at the bottom of the container and the removal of clay will be observed by monitoring the optical density of the solution. This experimental parameter can be measured using spectrophotometric methods and changes in optical density over time of the solution will indicate the efficiency of the auto-aggregation system. | (3) Sedimentation of clay particles found in the tailings ponds can be accelerated by the use of naturally occurring polysaccharides found on the surface of bacterial cell membranes that bind clay particles and form aggregates<sup>18</sup>. The cell-clay aggregates can then form sediments using Antigen 43 (Ag43). Ag43 is an autotransporter that promotes bacterial cell-to-cell aggregation, which accelerates sedimentation rates<sup>19</sup>. The Peking 2010 iGEM team successfully characterized Ag43 in the <i>E. coli</i> chassis. We will take advantage of native <i>E. coli</i> surface polysaccharides’ clay-binding properties and use them in conjunction with Ag43 to efficiently settle clay particles more rapidly than the current conventional methods. The team will introduce Ag43 into <i>E. coli</i> and apply the bacteria to a clay solution. The bacteria will aggregate the clay and form sediment at the bottom of the container and the removal of clay will be observed by monitoring the optical density of the solution. This experimental parameter can be measured using spectrophotometric methods and changes in optical density over time of the solution will indicate the efficiency of the auto-aggregation system. |
Revision as of 04:28, 21 September 2011
|
|
|
---|