Team:Lyon-INSA-ENS/Project/ContextFr

From 2011.igem.org

(Difference between revisions)
Line 21: Line 21:
</div>
</div>
-
     <div id="language";>
+
     <div class="contenugrand2";>  
-
        <img src="https://static.igem.org/mediawiki/2011/e/ef/Drapeau-anglais.gif"; width=20px; /> <a href="/Team:Lyon-INSA-ENS/Project/Context">English version  </a>
+
-
    </div>
+
-
 
+
-
<div class="contenugrand2";>  
+
  <br><br>
  <br><br>
-
 
+
<br>
 +
<br/><br/>
  <p id="top"> <font color="green" size="6">
  <p id="top"> <font color="green" size="6">
-
              Le projet "Cobalt Buster"<br><HR>
+
            Le projet "Cobalt Buster"<br><HR>
               <br/>
               <br/>
           </font>
           </font>
       </p><br/>
       </p><br/>
-
<ul style="list-style-type:circle;margin-left:10%;">           
 
-
              <li> <a href="#rcn-csgBAEFG"> <font color="green"> <b> Surproduction de Curli via un opéron synthétique contrôlé par le promoter Prcn-csgBAEFG inductible par le cobalt</b> </font> </a> </li>
 
-
              <br/>
 
-
              <li> <a href="#ompR"> <font color="green"> <b> Surexpression du gène Curli via le superactivateur OmpR234  </b> </font> </a> </li>
 
-
              <br>
 
-
              <li> <a href="#adhesion"> <font color="green"> <b> Ingénerie chez<i> E. coli</i> au niveau de l'adhésion afin d'améliorer la bioremédiation </b> </font> </a> </li>
 
-
              <br/>
 
-
        </ul>
 
-
 
-
<br>
 
-
<br>
 
-
 
-
          <p id =rcn-csgBAEFG> <font color="green" size="4" style="line-height : 1.5em">
 
-
              <big>Surproduction de curli </big>via un opéron synthétique contrôlé par le promoter P<i>rcn-csgBAEFG</i> inductible par le cobalt<br><HR>
 
-
          </font></p>
 
-
 
-
<br> <br>
 
-
 
-
   
 
-
<div style="text-align:center;">
 
-
<img name="emp" src="https://static.igem.org/mediawiki/2011/e/eb/Schema_projet.png" heigth="479px" width="650px" border=0 usemap="#ma_map"/>
 
-
</div>
 
-
 
-
<br><br><br><br><br>
 
-
 
-
        <p id=ompR> <font color="green" size="5">
 
-
              Surexpression du gène Curli via le superactivateur OmpR234  <br><HR>
 
-
          </font></p>
 
-
 
-
<br> <br><br> <br>
 
-
 
-
   
 
-
<div style="text-align:center;">
 
-
<img name="emp2" src="https://static.igem.org/mediawiki/2011/1/19/Schema2.jpg" heigth="479px" width="650px" border=0 usemap="#ma_map2"/>
 
-
</div>
 
-
 
-
<br><br>
 
-
<br>
 
-
<br><br>
 
-
<br>
 
-
                                        <!-- Description projet -->
+
                                        <!-- Description projet -->
   
   
       <br/>
       <br/>
Line 105: Line 62:
en effet un obstacle majeur à l'utilisation d'organismes génétiquement modifiés pour le traitement des déchets.
en effet un obstacle majeur à l'utilisation d'organismes génétiquement modifiés pour le traitement des déchets.
Les déchets radioactifs étant soumis à un traitement rigoureux et réglementé, l'utilisation des OGM dans ce
Les déchets radioactifs étant soumis à un traitement rigoureux et réglementé, l'utilisation des OGM dans ce
-
contexte devrait être bien accepté par la société. L'activité des centrales nucléaires modernes possédant des réacteurs à eau pressurisée génère des effluents radioactifs qui contiennent entre autres du cobalt radioactif. Le tube du circuit de refroidissement est composé d'un alliage d'acier riche en cobalt et nickel. Sous le bombardement de neutrons provenant du réacteur, <b> ces métaux stables se changent en isotopes radioactifs.</b>  
+
contexte devrait être bien accepté par la société. L'activité des centrales nucléaires modernes possédant des réacteurs à eau pressurisée génère des effluents radioactifs qui contiennent entre autres du cobalt radioactif. Le tube du circuit de refroidissement est composé d'un alliage d'acier riche en cobalt et nickel. Sous le bombardement de neutrons provenant du réacteur, <b> ces métaux stables se changent en isotopes radioactifs.</b></p>
-
</p>
+
<div class="lock" style="float : right; margin-right : 70%; margin-top: -15px">
<div class="lock" style="float : right; margin-right : 70%; margin-top: -15px">
Line 131: Line 87:
   <img src="https://static.igem.org/mediawiki/2011/4/4f/Interrogation.jpg" width="20px" />
   <img src="https://static.igem.org/mediawiki/2011/4/4f/Interrogation.jpg" width="20px" />
   <div class="lock-hidden" style="line-height : 1.5em">
   <div class="lock-hidden" style="line-height : 1.5em">
-
     Un gène mutant des pompes d'efflux ARCN * KO de la bactérie E. coli a été conçu pour produire un transporteur
+
     Un gène mutant des pompes d'efflux <i>rcnA</i>* de la bactérie <i>E. coli</i> a été conçu pour produire un transporteur avec une captation préférentielle pour le cobalt (Nicot). Le processus développé par Agnès  
-
avec une captation préférentielle pour le cobalt (Nicot). Le processus développé par Agnès  
+
Rodrigue et ses collègues indiens assure la décontamination des <b> cobalt jusqu'à 0,5 ppm </b> (8
Rodrigue et ses collègues indiens assure la décontamination des <b> cobalt jusqu'à 0,5 ppm </b> (8
nM dans 100 000L) avec seulement 4 kg <b> des bactéries modifiées contre 50 kg </b> avec une bactérie non modifiée ou
nM dans 100 000L) avec seulement 4 kg <b> des bactéries modifiées contre 50 kg </b> avec une bactérie non modifiée ou
Line 139: Line 94:
est économique. (Appl Microbio Biotechnol 2009 81:571 - 578). <br/>
est économique. (Appl Microbio Biotechnol 2009 81:571 - 578). <br/>
-
* rcnA = résistance au cobalt et au nickel
+
 
 +
* <i>rcnA</i> = résistance au cobalt et au nickel
   </div>
   </div>
</div>
</div>
 +
<br/>
     <p style="line-height : 1.5em; text-indent : 0%">
     <p style="line-height : 1.5em; text-indent : 0%">
  Toutefois, l'utilisation de ces  bactéries fixatrices de cobalt doit être facilitée, avant d'envisager une application industriel .
  Toutefois, l'utilisation de ces  bactéries fixatrices de cobalt doit être facilitée, avant d'envisager une application industriel .
   </p>
   </p>
 +
    <br/><br/>
 +
<p> <font color="green" size="5" style="line-height : 1.5em">
 +
              "Cobalt Buster" biofiltre<HR>
 +
          </font></p>
 +
    <br/><br/>
     <br/><br/>
     <br/><br/>
 +
 +
  <img src="https://static.igem.org/mediawiki/2011/4/41/Schema_general.png"; width=650px; style="margin-left:8%;" />
 +
    <br/><br/>
 +
    <br/><br/>
 +
 +
   <p style="line-height : 1.5em">
   <p style="line-height : 1.5em">
Line 153: Line 121:
cobalt et devrait éviter toute croissance sans adhésion. Dans une seconde approche, une part permettant la surproduction constitutifs du  superactivateur de la synthése de curli OmpR234 a été construit. En
cobalt et devrait éviter toute croissance sans adhésion. Dans une seconde approche, une part permettant la surproduction constitutifs du  superactivateur de la synthése de curli OmpR234 a été construit. En
activant les gènes curli situé dans le génome de base de E. coli K12, cette part permet d'augmenter l'adhérence des bactéries au polystyrène et au verre. Ces résultats nous amènent à discuter d'une possibles <a href="/Team:Lyon-INSA-ENS/Project/Industrialization"><b> l'industrialisation </b> </a> avec la société Assystem et des perspectives de recherche et développement sur le sujet avec la société EDF.
activant les gènes curli situé dans le génome de base de E. coli K12, cette part permet d'augmenter l'adhérence des bactéries au polystyrène et au verre. Ces résultats nous amènent à discuter d'une possibles <a href="/Team:Lyon-INSA-ENS/Project/Industrialization"><b> l'industrialisation </b> </a> avec la société Assystem et des perspectives de recherche et développement sur le sujet avec la société EDF.
 +
     </p>
     </p>
Line 161: Line 130:
</p>
</p>
</div>
</div>
-
     
 
</html>
</html>
{{Lyon-INSA-ENS/footer}}
{{Lyon-INSA-ENS/footer}}

Revision as of 23:44, 20 September 2011









Le projet "Cobalt Buster"





Ingénerie chez E. coli au niveau de l'adhésion afin d'améliorer la bioremédiation




Biofilms et dépollution. Souvent associé à des maladies et un encrassement non voulu des surfaces, les biofilms ont un un intérêt dans la bioremédiation, la biocatalyse ou comme biocarburant. Les procédés de bioremédiation utilisent la capacité microbienne naturelle à dégrader les substances organiques ou à modifier la spéciation des métaux en les immobilisant ou en les rendant volatils. De telles propriétés sont observées dans les écosystèmes naturel ainsi que dans des systèmes artificiels utilisées pour nettoyer les déchets solides ou liquides. L'intensité et la qualité de cette activité microbienne dépend de facteurs physiques et chimiques locaux, mais aussi de la voie choisie par les bactéries (biofilm ou planton). La formation de biofilm est associée à la résistance à la plupart des biocides par divers mécanismes. L'adhésion est une propriété de choix dans la plupart des processus de remédiation.



Stratégie: stimuler les capacités naturelles ! La liaison à la matrice extracellulaire, les pompes d'efflux et l'activation des transporteurs permettent la concentration et la séquestration des biocides, tels que les métaux. Le génie génétique permet de dynamiser ces activités et d'améliorer le traitement de la pollution dûe au métaux, en particulier pour les métaux toxiques à faible concentration. Les procédés chimiques classiques utilisant des résines échangeuses d'ions sont alors économiquement inappropriés, et grâce à leur grande sélectivité, les micro-organismes semblent très efficaces.



Biofiltres OGM pour le traitement des déchets nucléaires liquides. Le traitement des déchets nucléaires est une application prometteuse pour le traitement biologique des contaminations dûe aux métaux. Le confinement est en effet un obstacle majeur à l'utilisation d'organismes génétiquement modifiés pour le traitement des déchets. Les déchets radioactifs étant soumis à un traitement rigoureux et réglementé, l'utilisation des OGM dans ce contexte devrait être bien accepté par la société. L'activité des centrales nucléaires modernes possédant des réacteurs à eau pressurisée génère des effluents radioactifs qui contiennent entre autres du cobalt radioactif. Le tube du circuit de refroidissement est composé d'un alliage d'acier riche en cobalt et nickel. Sous le bombardement de neutrons provenant du réacteur, ces métaux stables se changent en isotopes radioactifs.

En subissant un bombardement neutronique en provenance du réacteur, les métaux stables se transforment en 60Co (demi-vie = 5,3 ans) et 58Co (demi-vie = 71 jours). La capture du cobalt est intéressante du point de vue sanitaires puisqu'il représente un danger sous ses deux formes radioactives et stables (cancérigènes) . Cela représente également un avantage sur le plan environnemental en évitant la contamination des eaux, des sols et des eaux souterraines. Même avec une courte demi-vie, le cobalt 60 émet des rayons gamma de haute intensité , et se désintègre en nickel, élément stable, mais polluant.

La solubilisation de ces produits d'activation, et des contaminants de l'eau entraine de la corrosion.



Capture sélective du cobalt. Contrôler l'immobilisation du cobalt radioactif est à la fois une importante question sanitaire et environnementale. Les produits d'activation sont régulièrement capturés en utilisant des résines échangeuses d'ions. Cela génère de grand volume de déchets solides en raison de la nature non spécifique des ions adsorbés. Dans ce contexte, une recherche issue de la collaboration entre l'INSA de Lyon et l'ENS a récemment construit une souche E.coli capable d'éliminer 85% du cobalt radioactif présent initialement sous forme de traces dans un effluent nucléaire simulé.

Un gène mutant des pompes d'efflux rcnA* de la bactérie E. coli a été conçu pour produire un transporteur avec une captation préférentielle pour le cobalt (Nicot). Le processus développé par Agnès Rodrigue et ses collègues indiens assure la décontamination des cobalt jusqu'à 0,5 ppm (8 nM dans 100 000L) avec seulement 4 kg des bactéries modifiées contre 50 kg avec une bactérie non modifiée ou 8,000 kg d'un polymère échangeur d'ions durant seulement deux fois une heure d'incubation. Ce genre de processus utilisant des bactéries modifiées sera un bon moyen, car la production de bactéries dans un bioréacteur est économique. (Appl Microbio Biotechnol 2009 81:571 - 578).
* rcnA = résistance au cobalt et au nickel

Toutefois, l'utilisation de ces bactéries fixatrices de cobalt doit être facilitée, avant d'envisager une application industriel .



"Cobalt Buster" biofiltre










"Cobalt Buster" biofiltre. Notre objectif est de faciliter la récupération des bactéries pleine de métal en induisant leur fixation sur un support solide. Nous avons choisi de développer la propriété d'adhésion recherchée en utilisant les propriétés exceptionnelles des fibres amyloïdes curli. Lors d'une première approche, un opéron synthétique comprenant l'ensemble des gènes nécessaires à la production de curli sous contrôle d'un promoteur fort inductible par le cobalt a été conçu et synthétisé. Cette construction permet à E. coli K12 (MC4100, MG1655, NM522 ...) de se coller sur du polystyrène et du verre. L'adhésion est renforcée par la présence de cobalt et devrait éviter toute croissance sans adhésion. Dans une seconde approche, une part permettant la surproduction constitutifs du superactivateur de la synthése de curli OmpR234 a été construit. En activant les gènes curli situé dans le génome de base de E. coli K12, cette part permet d'augmenter l'adhérence des bactéries au polystyrène et au verre. Ces résultats nous amènent à discuter d'une possibles l'industrialisation avec la société Assystem et des perspectives de recherche et développement sur le sujet avec la société EDF.







ENS assystem Biomérieux INSA INSA