Team:Wageningen UR/Project/DevicesSetup

From 2011.igem.org

(Difference between revisions)
(Custom fluidic device designed by Team Wageningen UR to measure oscillations)
(Custom fluidic device designed by Team Wageningen UR to measure oscillations)
Line 24: Line 24:
=== Setup ===
=== Setup ===
 +
<!--
In order to physically constrain the bacteria, Hasty used a trapping chamber as depicted in Figure Xsome below. The chamber had the dimensions of 1X1 micron. This limited the cell growth to forming a monolayer (sentence). Excess cells and AHL were flushed away through the main chanel. [REF]
In order to physically constrain the bacteria, Hasty used a trapping chamber as depicted in Figure Xsome below. The chamber had the dimensions of 1X1 micron. This limited the cell growth to forming a monolayer (sentence). Excess cells and AHL were flushed away through the main chanel. [REF]
Line 63: Line 64:
[[Team:Wageningen_UR/Project/DevicesSetup#Customary_fluidic_device_designed_by_Team_Wageningen_UR_to_measure_oscillations| back to top]]
[[Team:Wageningen_UR/Project/DevicesSetup#Customary_fluidic_device_designed_by_Team_Wageningen_UR_to_measure_oscillations| back to top]]
 +
 +
-->
<!--
<!--

Revision as of 19:27, 19 September 2011

Building a Synchronized Oscillatory System

Custom fluidic device designed by Team Wageningen UR to measure oscillations

Setup

As already mentioned in the design section of the device, the chamber was constructed in such a way that it was possible to place it under a fluorescence microscope for measuring GFP.


Closeup device WUR.JPG
Setup WUR.jpg


Top: Devices under the microscope

Right: Entire setup of the system around the fluorescence microscope

.





back to top