Team:MIT

From 2011.igem.org

(Difference between revisions)
 
(71 intermediate revisions not shown)
Line 6: Line 6:
<body>
<body>
-
<div id="col_left">
+
<div id="col_center">
     <div id="block-content">
     <div id="block-content">
-
        <h2>At a Glance</h2>
 
-
        <p>Our team is conveniently located alongside the lab of Tom Knight, the father of
 
-
synthetic biology, and iGEM headquarters, putting us in a unique position to be
 
-
able to interact on a daily basis with the talented staff running iGEM.
 
-
        </p>
 
     </div><!--end block-content-->
     </div><!--end block-content-->
-
    <div id="quote">
+
<h3>Tissues by Design</h3>
-
<p><span class="quote">&ldquo; </span>Six months in the lab can save an entire afternoon in the library.<span class="quote">&rdquo;</span></p>
+
<p>Our project focuses on tissue self-construction to achieve specific patterns of cell differentiation (initially with fluorescence, ultimately with cell fate regulators) with genetic circuits. To accomplish this, we focused on three components: cell-cell communication pathways, intracellular information processing circuits, and cell-cell adhesion. Through engineered control of these mechanisms, we are investigating how programmed local rules of interactions between cells can lead to the emergence of desired global patternings.</p>
-
        <p class="testimonial">Tom Knight</p>
+
 
-
    </div>
+
<br>
 +
<p><img src="https://static.igem.org/mediawiki/2011/5/51/Simulation.jpg" style="max-width:800px; margin-right:10px;"/></p></br>
 +
<p>Above is the result of a simulation run, starting with undifferentiated cells and ending with a pattern.</p>
 +
 
 +
<p>Specifically, for cell-cell signaling, we developed a modular juxtacrine platform, using Notch and Delta proteins. For intracellular information processing circuits, as a proof of concept, we build a 2-input AND gate. For cell-cell adhesion, the final output of our system, we used cadherin.
 +
Below is an animation depicting our project components. The cell-cell signaling of Notch-Delta interaction leads to the cleavage of the Notch intracellular domain, which enters the nucleus and after logic processing, expresses cadherins, which cause cells to adhere to similarly expressing cells.
 +
</p></br>
 +
<div align="center"><iframe width="400" height="300" src="http://www.youtube.com/embed/rGOB0gMxf_8" frameborder="0" allowfullscreen></iframe></div>
 +
<br>
 +
 
 +
We developed software tools to model the behavior of our system. Below is a sample of a simulation of cells with genetic circuits and how they differentiate.
 +
<div align="center"><iframe width="400" height="300" src="http://www.youtube.com/embed/dbz4VegsJOw?rel=0&amp;hd=1" frameborder="0" allowfullscreen></iframe>
 +
</div><br>
     <div id="center">
     <div id="center">
Line 28: Line 35:
        <li><a href="http://www.genewiz.com"><img src='https://static.igem.org/mediawiki/2011/3/33/Mit-genewiz.jpg' /></a></li>
        <li><a href="http://www.genewiz.com"><img src='https://static.igem.org/mediawiki/2011/3/33/Mit-genewiz.jpg' /></a></li>
        <li><a href="http://www.neb.com"><img src='https://static.igem.org/mediawiki/2011/4/4d/Mit-neb.jpg' /></a></li>
        <li><a href="http://www.neb.com"><img src='https://static.igem.org/mediawiki/2011/4/4d/Mit-neb.jpg' /></a></li>
-
        <li><a href="http://www.embitec.com"><img src='https://static.igem.org/mediawiki/2011/7/75/Mit-embitec.jpg' /></a></li>
+
        <li><a href="http://www.embitec.com"><img src='https://static.igem.org/mediawiki/2011/7/75/Mit-embitec.jpg' style="width:175px" /></a></li>
-
 
+
                <li><a href="http://ebics.net"><img src='https://static.igem.org/mediawiki/igem.org/0/0d/EBICS_logo.JPG' style="width:175px"></a></li>
 +
                <li><a href="http://ginkgobioworks.com/"><img src='http://ginkgobioworks.com/images/ginkgobioworks_logo.png' style="width:175px; "></a></li>
 +
                <li><a href="https://2011.igem.org/Main_Page"><img src='https://static.igem.org/mediawiki/igem.org/d/de/IGEM_basic_Logo_stylized.png' style="width:175px;"></li>
    </ul>
    </ul>
</div>
</div>
Line 36: Line 45:
    <ul>
    <ul>
    <li><a href="http://www.emdchemicals.com"><img src='https://static.igem.org/mediawiki/2011/e/ee/Gold_emdmillipore.jpg' /></a></li>
    <li><a href="http://www.emdchemicals.com"><img src='https://static.igem.org/mediawiki/2011/e/ee/Gold_emdmillipore.jpg' /></a></li>
-
<li><a href="http://www.millipore.com"><img src='https://static.igem.org/mediawiki/2011/d/d6/Gold_merckmillipore.jpg' /></a></li>
 
    </ul>
    </ul>
</div>
</div>
Line 51: Line 59:
     </div><!-- end 'center' -->
     </div><!-- end 'center' -->
-
    <div id="block-content">
 
-
<h2>History</h2>
 
-
<p>The MIT iGEM team is coming off its most successful year in program
 
-
history where, in addition to fulfilling the requirements to receive a gold medal,
 
-
the team earned the distinction of Best Manufacturing Project and also was
 
-
awarded the iGEMers Prize (voted best project by other iGEM teams). Both the
 
-
scope of possible projects and resources available to the MIT team was greatly
 
-
expanded with the arrival of Professor Ron Weiss, who coached award-winning
 
-
iGEM teams at Princeton since the beginning of the competition. </p><br />
 
-
<p>Along with
 
-
Prof. Weiss, the 2010 team was under the leadership and aided by numerous
 
-
professors and graduate instructors who will be returning this year to continue
 
-
leading the program to success. As a team, we are proud of our continued
 
-
success, our rich iGEM history, and the strong relationships we are able to
 
-
build and maintain with many of the leading researchers in the field of synthetic
 
-
biology.</p>
 
     </div><!--end block-content-->
     </div><!--end block-content-->
</div><!--end col_left-->
</div><!--end col_left-->
-
<div id="col_right">
+
      
-
     <div id="twitter">
+
-
        <h2>Latest Tweets</h2>
+
-
<ul id="twitter_update_list">
+
-
    <li>Loading Tweets..</li>
+
-
</ul>
+
-
<img src='https://static.igem.org/mediawiki/2011/d/da/MIT-twitter.jpg' style="width:100px; float:right"><br /><br />
+
-
<a href="http://twitter.com/share" class="twitter-share-button" data-count="none" >Tweet</a><script type="text/javascript" src="http://platform.twitter.com/widgets.js"></script> <br />
+
-
<a href="http://twitter.com/MIT_iGEM" class="twitter-follow-button">Follow @MIT_iGEM</a>
+
-
<script src="http://platform.twitter.com/widgets.js" type="text/javascript"></script>
+
-
    </div><!-- end Twitter -->
+
-
 
+
-
    <div id="facebook" style="clear:both;">
+
-
        <h2>Facebook</h2>
+
-
        <div id="fb-root" style="margin-bottom: 10px;"></div><fb:like-box href="https://www.facebook.com/pages/MIT-iGEM-2011/120181284734145" width="230" show_faces="false" border_color="" stream="false" header="true"></fb:like-box>
+
-
 
+
-
    </div><!-- end Facebook -->
+
-
+
-
    <div id="contacts">
+
-
<h2>Contact Us</h2>
+
-
<p><span class="green">Email:</span><a href="index.html"> igem2011@mit.edu</a></p>
+
-
    </div>
+
-
</div><!--end col_right-->
+
-
<script type="text/javascript" src="http://twitter.com/javascripts/blogger.js"></script>
 
-
<script type="text/javascript" src="http://twitter.com/statuses/user_timeline/MIT_iGEM.json?callback=twitterCallback2&count=4"></script>
 
-
<script src="http://connect.facebook.net/en_US/all.js#xfbml=1"></script>
 
-
 
</body>
</body>
</html>
</html>

Latest revision as of 04:03, 29 October 2011

Tissues by Design

Our project focuses on tissue self-construction to achieve specific patterns of cell differentiation (initially with fluorescence, ultimately with cell fate regulators) with genetic circuits. To accomplish this, we focused on three components: cell-cell communication pathways, intracellular information processing circuits, and cell-cell adhesion. Through engineered control of these mechanisms, we are investigating how programmed local rules of interactions between cells can lead to the emergence of desired global patternings.



Above is the result of a simulation run, starting with undifferentiated cells and ending with a pattern.

Specifically, for cell-cell signaling, we developed a modular juxtacrine platform, using Notch and Delta proteins. For intracellular information processing circuits, as a proof of concept, we build a 2-input AND gate. For cell-cell adhesion, the final output of our system, we used cadherin. Below is an animation depicting our project components. The cell-cell signaling of Notch-Delta interaction leads to the cleavage of the Notch intracellular domain, which enters the nucleus and after logic processing, expresses cadherins, which cause cells to adhere to similarly expressing cells.



We developed software tools to model the behavior of our system. Below is a sample of a simulation of cells with genetic circuits and how they differentiate.

Sponsors

MIT Departments