Team:Grenoble/Projet/Intro
From 2011.igem.org
Maxime.huet (Talk | contribs) |
|||
(7 intermediate revisions not shown) | |||
Line 8: | Line 8: | ||
+ | <!-- | ||
<img src="http://www.clickartists.org/clicksite/html/images/square.jpg"/> | <img src="http://www.clickartists.org/clicksite/html/images/square.jpg"/> | ||
Line 13: | Line 14: | ||
Ne laissez pas le carré trop longtemps si vous n'éditez pas, chaque fois reprenez ce qui est sur internet plutôt que ce que vous avez sur votre PC | Ne laissez pas le carré trop longtemps si vous n'éditez pas, chaque fois reprenez ce qui est sur internet plutôt que ce que vous avez sur votre PC | ||
+ | --> | ||
Line 65: | Line 67: | ||
<ul> | <ul> | ||
<li> | <li> | ||
- | <strong> | + | <strong>Use a single bacterial strain: <i>Escherichia coli</i> BW 25 113, containing the whole genetic network</strong> |
- | + | ||
- | + | ||
- | + | ||
</li> | </li> | ||
<li> | <li> | ||
Line 74: | Line 73: | ||
This point was revised according to <a href="https://2011.igem.org/Team:Grenoble/Projet/Results/Quorum#Simulation" title="Optimization of the device thanks to modelling">modeling results.</a> A device with channels containing bacteria instead of a biofilm has been chosen. | This point was revised according to <a href="https://2011.igem.org/Team:Grenoble/Projet/Results/Quorum#Simulation" title="Optimization of the device thanks to modelling">modeling results.</a> A device with channels containing bacteria instead of a biofilm has been chosen. | ||
</li> | </li> | ||
- | |||
</ul> | </ul> | ||
+ | |||
<center> | <center> | ||
<a href="https://static.igem.org/mediawiki/2011/c/c5/1_type_bacteria.png"><img align="middle" src="https://static.igem.org/mediawiki/2011/c/c5/1_type_bacteria.png" width=600px/></a> | <a href="https://static.igem.org/mediawiki/2011/c/c5/1_type_bacteria.png"><img align="middle" src="https://static.igem.org/mediawiki/2011/c/c5/1_type_bacteria.png" width=600px/></a> | ||
Line 82: | Line 81: | ||
Plate covered by the bacteria. | Plate covered by the bacteria. | ||
</div> | </div> | ||
+ | |||
<ul> | <ul> | ||
- | <li><strong> | + | <li><strong>Build a comparative measurement system:</strong></li> |
</ul> | </ul> | ||
<table class="nobordure"> | <table class="nobordure"> | ||
<tr> | <tr> | ||
- | <td><a href="https://static.igem.org/mediawiki/2011/ | + | <td><a href="https://static.igem.org/mediawiki/2011/0/07/Plaque_mer_iptg.png"><img src="https://static.igem.org/mediawiki/2011/0/07/Plaque_mer_iptg.png" height="350px"></a></td> |
<td> | <td> | ||
<p> | <p> | ||
- | The | + | The principle of the measurement is based on the comparison between an unknown mercury concentration and a known IPTG concentration. In practice, the quantification scale is made by the prior application of a concentration gradient of IPTG on the plate. |
- | + | ||
- | + | ||
- | + | ||
</p> | </p> | ||
</td> | </td> | ||
Line 101: | Line 98: | ||
<p> | <p> | ||
- | + | Two different bacterial behaviors arise from the uniform addition of polluted sample on the plate. They depend on the predominant concentration: | |
</p> | </p> | ||
Line 109: | Line 106: | ||
<ul> | <ul> | ||
<li> | <li> | ||
- | On the left side, where the mercury concentration is prevailing, bacteria | + | On the left side, where the mercury concentration is prevailing, bacteria will behave as <strong>senders</strong>. They have the ability to release quorum sensing molecules (AHL) in the external medium, thanks to the expression of the CinI protein. |
</li> | </li> | ||
<li> | <li> | ||
- | On the right, where the IPTG concentration is dominant, bacteria | + | On the right, where the IPTG concentration is dominant, bacteria will behave as <strong>receivers</strong>. They express CinR protein, a cytoplasmic receptor for quorum sensing. |
</li> | </li> | ||
</ul> | </ul> | ||
Line 118: | Line 115: | ||
<td> | <td> | ||
<center> | <center> | ||
- | <a href="https://2011.igem.org/Team:Grenoble/Projet/Design/quorum" title="Click for more details on the relation between the two bahaviours and the quorum sensing"><img src="https://static.igem.org/mediawiki/2011/ | + | <a href="https://2011.igem.org/Team:Grenoble/Projet/Design/quorum" title="Click for more details on the relation between the two bahaviours and the quorum sensing"><img src="https://static.igem.org/mediawiki/2011/0/00/Receiving_secr_bacteria.png" width="450px"></a> |
</center> | </center> | ||
</td> | </td> | ||
Line 125: | Line 122: | ||
<td> | <td> | ||
<p> | <p> | ||
- | + | In summary, two areas with distinctive bacterial behavior appear on the plate. They are separated by one boundary that approaches one side of the plate or the other, depending on the mercury level. For example, in the case of a sample with a low mercury concentration, the boundary will appear closer to the left side. | |
</p> | </p> | ||
</td> | </td> | ||
Line 135: | Line 132: | ||
<p> | <p> | ||
- | + | The key point is therefore the localization of the boundary, which we need to visualize | |
</p> | </p> | ||
Line 141: | Line 138: | ||
<li><strong>A visual result:</strong></li> | <li><strong>A visual result:</strong></li> | ||
</ul> | </ul> | ||
- | |||
- | |||
<center> | <center> | ||
Line 158: | Line 153: | ||
<p> | <p> | ||
- | At the boundary,Quorum Sensing molecule, AHL, released by sending bacteria will be | + | At the boundary,Quorum Sensing molecule, AHL, released by sending bacteria will be uptaken by the front of receiving bacteria. The complex formed by AHL molecules and CinR proteins will then induce the coloration of the front receiving bacteria. |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</p> | </p> | ||
+ | |||
+ | <center> | ||
+ | <a href="https://2011.igem.org/Team:Grenoble/Projet/Design" title="Click here"><img src="https://static.igem.org/mediawiki/2011/1/1b/Bouton_general_biologie.png"/></a> | ||
+ | <div class="legend"> | ||
+ | Let's go further to understand how such evolution of this system is possible with only one strain ? | ||
+ | </div> | ||
+ | </center> | ||
</div> | </div> | ||
Latest revision as of 23:03, 28 October 2011
The Project, Mercuro-Coli
Introduction
With industrial growth, wastes are accumulating and the presence of pollutant and toxic compounds is becoming an international concern.
In this context, we present Mercuro-Coli, an easy-to-use biosensor for the in situ detection and quantification of mercury into polluted water. Intended to fieldwork applications, the device should be very easy to handle:
- Unpack the plate.
- Deposit the polluted water sample.
- If mercury is present, a red stripe appear, its position indicates the amount of pollutant.
Specifications
At the beginning of the project, we defined a certain number of specifications for the device:
- Use a single bacterial strain: Escherichia coli BW 25 113, containing the whole genetic network
-
Form a biofilm on the plate with E. coli bacteria containing the designed genetic circuit.
This point was revised according to modeling results. A device with channels containing bacteria instead of a biofilm has been chosen.
- Build a comparative measurement system:
Two different bacterial behaviors arise from the uniform addition of polluted sample on the plate. They depend on the predominant concentration:
The key point is therefore the localization of the boundary, which we need to visualize
- A visual result:
At the boundary,Quorum Sensing molecule, AHL, released by sending bacteria will be uptaken by the front of receiving bacteria. The complex formed by AHL molecules and CinR proteins will then induce the coloration of the front receiving bacteria.
iGEM 2011 Main Page Contact Us:Clic here ! |