Team:HKUST-Hong Kong/overview.html

From 2011.igem.org

(Difference between revisions)
 
(93 intermediate revisions not shown)
Line 37: Line 37:
</head>
</head>
-
<body bgcolor="#A1C6B2">
 
-
<table align=left style="border-collapse: collapse">
+
 
 +
<table align=top style="border-collapse: collapse">
<TR>
<TR>
-
<TH ROWSPAN=3 BGCOLOR="#A1C6B2">
+
<TH BGCOLOR="#A1C6B2">
-
<a name=top></a><p>
+
<a name=top></a>
-
<b><h3>Overview</h3></b>
+
 
 +
<p>
 +
 
 +
<br>
 +
 
 +
 
<font color=black>  
<font color=black>  
 +
<a href=#back><img src="https://static.igem.org/mediawiki/2011/4/4a/Ust_back.gif" width=100 height=100 alt="Background"></a>
 +
<a href=#plan><img src="https://static.igem.org/mediawiki/2011/6/68/Ust_battle.gif" width=100 alt="The Battle Plan" height=100></a>
 +
<a href=#build>
 +
<img src="https://static.igem.org/mediawiki/2011/e/e4/Ust_build.gif" width=100 height=100 alt=" Building the horse - Engineering a novel strain for antibiotics-free selection"></a>
 +
<a href=#army>
 +
<img src="https://static.igem.org/mediawiki/2011/2/23/Ust_army.gif" width=100 height=100 alt="The army inside - Toluene-4-Monooxygenase (T4MO)"></a>
 +
 +
<b><font size=14> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Overview</font></b>
 +
<br>
 +
&nbsp;  &nbsp;
 +
<a href=#back>Background</a> · &nbsp;
 +
<a href=#plan>The Battle Plan</a> · &nbsp;
 +
<a href=#build>Building the horse</a> · &nbsp;
 +
<a href=#army>The army inside</a>
 +
<hr><br>
</p>
</p>
 +
<p >
<p >
-
<h4 align="left"><a name=back></a>1. Background </h4>
+
<b><a name=back></a>1. Background </b>
</p>
</p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
-
In the past decade, the number of medical cases involving multi-antibiotic resistant microbes has seen a steady increase, and misuse of antibiotics has repeatedly been mentioned as one of the major reasons for the arise of such organisms. This situtation provided the inspiration for our project, which is to attempt to improve the effectiveness of antibiotics, so that we can apply less of it to achieve the same effect as we do now.
+
In the past decade, the number of medical cases involving multi-antibiotic resistant microbes has seen a steady increase, and misuse of antibiotics has repeatedly been mentioned as one of the major reasons for the arise of such organisms. This situation provided the inspiration for our project, which is to attempt to improve the effectiveness of antibiotics, so that we can apply less of it to achieve the same effect as we do now.
</p>
</p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
Line 62: Line 83:
-
<p >
+
<p>
-
<h4 align=left><a name=plan></a>2. The Battle Plan</h4>
+
<b><a name=plan></a>2. The Battle Plan</b>
</p>
</p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
-
Indole has been proposed as a key signalling molecule for <i>E. coli</i> in mediating resistance to environmental stress.[1] In particular, indole is found to stimulate passive resistance against antibiotics by triggering stress-response mechanisms inside cells, including increased expression of drug efflux pumps and oxidative-damage repairing systems.  
+
Indole has been proposed as a key signalling molecule for <i>E. coli</i> in mediating resistance to environmental stress.[1] In particular, indole is found to stimulate passive resistance against antibiotics by triggering stress-response mechanisms inside cells, including increased expression of drug efflux pumps and oxidative-damage repair systems.  
</p>
</p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
-
In a normal <i>E. coli</i>  popoulation containing wild type and naturally resistant mutants, the mutants will supply indole to nearby cells that are under antibiotic stress. This is considered a 'charity' action as the mutant does so at a fitness cost to itsef. Our aim is to introduce E. trojan into the population and proceed to degrade indole via an enzyme (T4MO) and remove the charity effect. If the charity effect is significant, removal of its presence will cause a notable increase in the effectiveness of antibiotics.
+
In a normal <i>E. coli</i>  population containing wild type and naturally resistant mutants, the mutants will supply indole to nearby cells that are under antibiotic stress. This is considered to be a 'charity' action as the mutant does so at a fitness cost to itself. Our aim is to introduce E. trojan into the population and proceed to degrade indole via an enzyme (T4MO) and remove the charity effect. If the charity effect is significant, removal of its presence will cause a notable increase in the effectiveness of antibiotics.
<a href=#top>[Top]</a>
<a href=#top>[Top]</a>
</p>
</p>
Line 78: Line 99:
   
   
<p >
<p >
-
<h4 align=left><a name=build></a>3. Building the horse - Engineering a novel strain for antibiotics-free selection</h4>
+
<b><a name=build></a>3. Building the horse - Engineering a novel strain for antibiotics-free selection</b>
</p>
</p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
-
To properly test the effect of indole degradation on the growth of an <i>E. coli</i> population under antibiotic stress, our E. trojan has to remain sensitive to the antibiotic used while it degrades indole. Else as a highly resistant strain itself, E. trojan will produce indole as well, lowering the efficiency of degradation. Nonetheless, molecular cloning needed to be done in order to introduce the T4MO gene into a bacteria. So here we encounter a problem: how to perform cloning without using antibiotics resistance as the selection marker?
+
To study the interaction and population dynamics of the naturally-coexisting HR (high resistance) and LR (low resistance) <i>E. coli</i> strains under antibiotic selection pressure, the E. trojan - which is to be introduced to HR/ LR mixed culture - should harbor the T4MO gene to allow it to perform quorum sensing disruption between the two strains. In addition, the E. trojan should not possess a wide spectrum of antibiotic resistance as this would give it an inherent selective advantage, thus interfering with the relationship between MICs and indole degradation in our study.
</p>
</p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
-
There are existing methods to achieve this, including but not limited to auxotrophic selectoin and those that utilize toxin-antitoxins interactions. However, they have their own drawbacks and are not suitable for our purposes in our study of bacterial population dynamics.  
+
To fulfill the above criteria, it becomes necessary for us to first construct a new, pre-E. trojan bacterial strain (E. CRAFT) that is capable of performing plasmid selection without antibiotics and consequently contains as few antibiotic resistance genes as possible. Due to some limitations of the various alternative (non-antibiotic) selection methods[2] available today, we have designed E. CRAFT in a way that causes it to perform selection by imposing internal pressure of holding an essential gene for survival. Upon the completion of this precursor strain, the E. trojan can be easily constructed by transformation of the T4MO gene into it. In the long run, however, we hold a hope that this novel strain will prove to be a versatile, effective alternative to the widely- used antibiotic selection method.<a href=#top>[Top]</a>
</p>
</p>
-
<p align=justify style="margin: 20px 20px 20px 20px">
 
-
Thus we propose the construction of EX, which would be a new bacterial strain that in theory can be selected for plasmid while remains possesses no antibiotic resistance. Selection can be performed under a simple change in physical environment – increasing the incubation temperature. The trick behind the mechanism originates from yeast artificial chromosome. It is the removal of an essential gene <i>nadE</i> and its relocation to a piece of extra-chromosomal DNA that we wish to maintain. <a href=#top>[Top]</a>
 
-
</p>
 
<p >
<p >
-
<h4 align=left><a name=army></a>4. The army inside - Toluene-4-Monooxygenase (T4MO)</h4>
+
<b><a name=army></a>4. The army inside - Toluene-4-Monooxygenase (T4MO)</b>
</p>
</p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
Line 108: Line 126:
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
-
As our novel strain will have one of its essential genes maintained in a plasmid, a lot of uncertainties are present regarding its fitness. It is quite possible that it will be more vulnerable to antibiotics compared with wild type and thus will be selected against when cultured together with wild type <i>E. coli</i>. This would reduce the effectiveness of our construct and is not desirable. Hence we planed an additional component to be maintained in the plasmid, known as Bcr, which we hope will boost the resistance of <i>E. Trojan</i>. You will find more details on its construction <a href="asm.html"  target=_top><b>here</b></a>.<a href=#top>[Top]</a></p>
+
As our novel strain will have one of its essential genes maintained in a plasmid, a lot of uncertainties are present regarding its fitness. It is quite possible that it will be more vulnerable to antibiotics compared with wild type and thus will be selected against when cultured together with wild type <i>E. coli</i>. This would reduce the effectiveness of our construct and is not desirable. Hence we planed an additional component to be maintained in the plasmid, known as Bcr, which we hope will boost the resistance of E. trojan. You will find more details on its construction <a href="asm.html"  target=_top><b>here</b></a>.<a href=#top>[Top]</a></p>
<p align=justify style="margin: 20px 20px 20px 20px">
<p align=justify style="margin: 20px 20px 20px 20px">
Line 118: Line 136:
[1] <a href=http://www.nature.com/nature/journal/v467/n7311/pdf/nature09354.pdf>Bacterial charity work leads to population-wide resistance</a>
[1] <a href=http://www.nature.com/nature/journal/v467/n7311/pdf/nature09354.pdf>Bacterial charity work leads to population-wide resistance</a>
<br>
<br>
-
[2] <a href=aem.asm.org/cgi/reprint/71/9/5476.pdf>Mutations of Toluene-4-Monooxygenase That Alter Regiospecificity of Indole Oxidation and Lead to Production of Novel Indigoid Pigments</a>
+
[2] <a href=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941680/pdf/1475-2859-9-65.pdf>Antibiotic-free selection in <i>E. coli</i>: new considerations for optimal design and improved production</a>
<br>
<br>
-
[3] <a href=aem.asm.org/cgi/reprint/73/13/4100.pdf>Enterohemorrhagic Escherichia coli Biofilms Are Inhibited by 7-Hydroxyindole and Stimulated by Isatin</a><br><br>
+
[3] <a href=aem.asm.org/cgi/reprint/71/9/5476.pdf>Mutations of Toluene-4-Monooxygenase That Alter Regiospecificity of Indole Oxidation and Lead to Production of Novel Indigoid Pigments</a>
 +
<br>
 +
[4] <a href=aem.asm.org/cgi/reprint/73/13/4100.pdf>Enterohemorrhagic Escherichia coli Biofilms Are Inhibited by 7-Hydroxyindole and Stimulated by Isatin</a><br><br>
</p>
</p>
Line 127: Line 147:
</TH>
</TH>
-
    <TD bgcolor="white" width=160 height=150>
 
-
<p>
 
-
<h2>Overview</h2>
 
-
<br>
 
-
<img src=https://static.igem.org/mediawiki/2011/6/6b/Ust_36.jpg width=100 height=100><BR>
 
-
<a href=#back>1. Background</a><br>
 
-
<a href=#plan>2. The Battle Plan</a><br>
 
-
<a href=#build>3. Building the horse - Engineering a novel strain for antibiotics-free selection</a><br>
 
-
<a href=#army>4. The army inside - Toluene-4-Monooxygenase (T4MO)</a><br>
+
 
-
</font>
+
-
</p>
+
</TD>
</TD>
Line 148: Line 158:
     </TR>
     </TR>
-
<TR>
 
-
<TD bgcolor=white height=150><p>
 
-
</TD>
 
-
    </TR>
 
-
+
</table>
-
<TR>
+
-
<TD bgcolor=#182828 ><p>
+
-
<font color=#CDD2C2>
+
-
</font>
 
-
 
-
</TD>
 
-
    </TR>
 
-
</table>
 
-
<br>
+
<table border="0" cellspacing="0" cellpadding="10">
 +
<tr>
 +
<td width="100px" height="150px"; bgcolor="#980000" >
 +
<p align="center">  
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong" target=_top>
 +
<b><font color="#FFE1E1" size=3>Home</font></b>
 +
</p>
 +
</td>
 +
<td width="382px" bgcolor="#CCFF99" valign="baseline">
 +
<p align="center" valign="baseline">
 +
<b><font color="green">Our Project</font></b></p>
 +
<p align="center" valign="baseline">
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/overview.html" target=_top>Overview</a><font color="green"> | </font>
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/data.html" target=_top>Data Page</a><br></p>
 +
<p align="center" valign="baseline">
 +
<b><font color="green">Experiments and Results</font></b></p>
 +
<p align="center" valign="baseline">
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/asm.html"  target=_top>Strain Construction</a><font color="green"> | </font>
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/mic.html"  target=_top>Culture Tests</a><font color="green"> | </font>
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/modeling.html"  target=_top>Modeling</a><br></p>
 +
 +
<p align="center" valign="baseline">
 +
<b><font color="green">Miscellaneous</font></b></p>
 +
 +
<p align="center" valign="baseline">
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/notebook.html" target=_top>Notebook</a></p>
-
<table border="0" cellspacing="0" cellpadding="10">
 
-
<tr>
 
-
<td width="100px" height="150px"; bgcolor="#980000" >
 
-
<p align="center"><b><font face="Verdana, Arial, Helvetica, sans-serif" size="2" color="#FFE1E1">
 
-
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong" target=_top><font face="Verdana, Arial, Helvetica, sans-serif" size="4" color="#FFE1E1" font color=white><span style="font-weight:700">Home</span></font></a></font></b></p>
 
-
</p>
 
</td>
</td>
-
<td width="332px" bgcolor="#CCFF99" valign="baseline">
 
-
<p align="center" valign="baseline"><b> <font face="Verdana, Arial, Helvetica, sans-serif" size="3" color="green">
 
-
Our Project</font></b></p>
+
<td width="302px" bgcolor="#D09C00" valign="baseline">  
-
<p align="left"><font size="1" face="Verdana, Arial, Helvetica, sans-serif" color="green">
+
<p align="center" valign="baseline">
-
<a href="team.html" target=_top><font color=green>
+
<b><font color="#FFF4D0">iGEM Resources</font></b></p>
-
<a href="overview.html" target=_top>Overview</a> |
+
-
<a href="data.html" target=_top>Data Page</a><br>
+
-
<span style="line-height:1; font-weight:600">Experiments and Results</span><br>
+
-
<a href="asm.html" target=_top>Strain Construction</a> |
+
-
<a href="mic.html"  target=_top>Culture Tests</a> |
+
-
<a href="modeling.html"  target=_top>Modeling</a><br>
+
-
<span style="line-height:1; font-weight:600">Miscellaneous</span><br>
+
<p align="center" valign="baseline">
-
<a href="future.html" target=_top>Future Plans</a> |
+
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/acknowledgement.html" target=_top>Acknowledgements</a></p>
-
<a href="notebook.html" target=_top>Notebook</a>
+
-
</font></a><br></font></p>
+
-
</td>
+
-
<td width="332px" bgcolor="#D09C00" valign="baseline">
 
-
<p align="left"><b><font face="Verdana, Arial, Helvetica, sans-serif" size="3" color="#FFF4D0">
 
-
         
 
-
iGEM Resources</font></b></p>
 
-
<p align="left"><font face="Verdana, Arial, Helvetica, sans-serif" size="1" color="#FFFFFF">
 
-
<a href="acknowledgement.html" target=_top>Acknowledgements</a><br>
 
-
<span style="line-height:0.7; font-weight:600">The Team</span><br>
 
-
<a href="team.html" target=_top>iGEM Member List</a> |
 
-
<a href="contribution.html" target=_top>Contributions</a><br>
 
-
<span style="line-height:0.7; font-weight:600">Achievements</span><br>
 
-
<a href="medal.html" target=_top>Medal Requirements</a> |
 
-
<a href="biosafety.html" target=_top>BioSafety</a><br>
 
-
<span style="line-height:0.7; font-weight:600">Biobricks</span><br>
 
-
<a href="characterization.html" target=_top>Master List & Characterization Data</a>
 
 +
<p align="center" valign="baseline">
 +
<b><font color="#FFF4D0">The Team</font></b></p>
 +
 +
<p align="center" valign="baseline">
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/team.html" target=_top>iGEM Member List</a><font color="#FFF4D0"> | </font>
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/contribution.html" target=_top>Contributions</a><br></p>
 +
 +
 +
<p align="center" valign="baseline">
 +
<b><font color="#FFF4D0">Achievements</font></b></p>
 +
 +
<p align="center" valign="baseline">
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/medal.html" target=_top>Medal Requirements</a><font color="#FFF4D0"> | </font>
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/biosafety.html" target=_top>BioSafety</a><br></p>
 +
 +
 +
<p align="center" valign="baseline">
 +
<b><font color="#FFF4D0">BioBricks</font></b></p>
 +
 +
 +
<p align="center" valign="baseline">
 +
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/characterization.html" target=_top>Master List & Characterization Data</a><br></p>
-
<a href=.html><font color=white>
 
-
</font></a><br><font></p>
 
</td>
</td>
-
<td width="200px"bgcolor="#980000"valign="baseline">  
+
<td width="180px"bgcolor="#980000"valign="baseline">  
-
<p align="left" valign="baseline"><b><font face="Verdana, Arial, Helvetica, sans-serif" size="3" color="#FFE0E0">
+
<p align="center" valign="baseline">
-
Human Practice</font></b></p>
+
<b><font color="#FFE0E0">Human Practice</font></b></p>
-
<p align="left"><font face="Verdana, Arial, Helvetica, sans-serif" size="1" color="#FFFFFF">
+
 
-
<a href="workshop.html" target=_top>Workshop</a> |
+
<p align="center" valign="baseline">
-
<font face="Verdana, Arial, Helvetica, sans-serif" size="1" color="#FFFFFF">
+
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/workshop.html" target=_top>Workshop</a><font color="white"> | </font>
-
<a href="survey.html" target=_top>Survey</a>
+
<a href="https://2011.igem.org/Team:HKUST-Hong_Kong/survey.html" target=_top>Survey</a><br></p>
 +
 
 +
 
-
</span></p>
 
</td>
</td>
</tr>
</tr>
</table>
</table>
-
 
</body>
</body>
</html>
</html>

Latest revision as of 17:51, 28 October 2011


Background The Battle Plan  Building the horse - Engineering a novel strain for antibiotics-free selection The army inside - Toluene-4-Monooxygenase (T4MO)              Overview
    Background ·   The Battle Plan ·   Building the horse ·   The army inside



1. Background

In the past decade, the number of medical cases involving multi-antibiotic resistant microbes has seen a steady increase, and misuse of antibiotics has repeatedly been mentioned as one of the major reasons for the arise of such organisms. This situation provided the inspiration for our project, which is to attempt to improve the effectiveness of antibiotics, so that we can apply less of it to achieve the same effect as we do now.

Our project name - E. trojan - has its origins rooted in the Trojan Horse found in the tale of the Trojan War. Similar to how the Greeks destroyed the city of Troy from within using a wooden horse filled with soldiers, our E. trojan also works to destroy an E. coli population that is under antibiotic stress from within through indole quorum-sensing disruption. [Top]

2. The Battle Plan

Indole has been proposed as a key signalling molecule for E. coli in mediating resistance to environmental stress.[1] In particular, indole is found to stimulate passive resistance against antibiotics by triggering stress-response mechanisms inside cells, including increased expression of drug efflux pumps and oxidative-damage repair systems.

In a normal E. coli population containing wild type and naturally resistant mutants, the mutants will supply indole to nearby cells that are under antibiotic stress. This is considered to be a 'charity' action as the mutant does so at a fitness cost to itself. Our aim is to introduce E. trojan into the population and proceed to degrade indole via an enzyme (T4MO) and remove the charity effect. If the charity effect is significant, removal of its presence will cause a notable increase in the effectiveness of antibiotics. [Top]

3. Building the horse - Engineering a novel strain for antibiotics-free selection

To study the interaction and population dynamics of the naturally-coexisting HR (high resistance) and LR (low resistance) E. coli strains under antibiotic selection pressure, the E. trojan - which is to be introduced to HR/ LR mixed culture - should harbor the T4MO gene to allow it to perform quorum sensing disruption between the two strains. In addition, the E. trojan should not possess a wide spectrum of antibiotic resistance as this would give it an inherent selective advantage, thus interfering with the relationship between MICs and indole degradation in our study.

To fulfill the above criteria, it becomes necessary for us to first construct a new, pre-E. trojan bacterial strain (E. CRAFT) that is capable of performing plasmid selection without antibiotics and consequently contains as few antibiotic resistance genes as possible. Due to some limitations of the various alternative (non-antibiotic) selection methods[2] available today, we have designed E. CRAFT in a way that causes it to perform selection by imposing internal pressure of holding an essential gene for survival. Upon the completion of this precursor strain, the E. trojan can be easily constructed by transformation of the T4MO gene into it. In the long run, however, we hold a hope that this novel strain will prove to be a versatile, effective alternative to the widely- used antibiotic selection method.[Top]

4. The army inside - Toluene-4-Monooxygenase (T4MO)

Toluene-4-Monooxygenase (T4MO) is a three-component enzyme system that is naturally able to degrade a variety of hydrocarbons. In particular, its ability to oxidize small aromatic compounds has caught the attention of scientists looking for biological means of producing certain useful organic chemicals for industrial use, resulting in extensive research on modifying its activity and affinity.

For our project, a mutated form of T4MO (double mutations at G103L & A107G) was chosen as the candidate for indole degradation. While there were several possible candidates, this particular one was known to convert almost 50% of the indole into 7-hydroxyindole (7-HI)[2]. This is of great interest to us as 7-HI has been documented to inhibit biofilm formation in Enterohemorrhagic E. coli[3], and quite possibly for other strains of E. coli as well. Biofilm formation is a major element that reduces the efficiency of antibiotics due to reduced area of action, and hence we were keen to take advantage of this synergistic effect to improve our construct.[Top]

4.1 Soldiers need shields...maybe - Multidrug Efflux Pump (Bcr)

As our novel strain will have one of its essential genes maintained in a plasmid, a lot of uncertainties are present regarding its fitness. It is quite possible that it will be more vulnerable to antibiotics compared with wild type and thus will be selected against when cultured together with wild type E. coli. This would reduce the effectiveness of our construct and is not desirable. Hence we planed an additional component to be maintained in the plasmid, known as Bcr, which we hope will boost the resistance of E. trojan. You will find more details on its construction here.[Top]


[1] Bacterial charity work leads to population-wide resistance
[2] Antibiotic-free selection in E. coli: new considerations for optimal design and improved production
[3] Mutations of Toluene-4-Monooxygenase That Alter Regiospecificity of Indole Oxidation and Lead to Production of Novel Indigoid Pigments
[4] Enterohemorrhagic Escherichia coli Biofilms Are Inhibited by 7-Hydroxyindole and Stimulated by Isatin

Home

Our Project

Overview | Data Page

Experiments and Results

Strain Construction | Culture Tests | Modeling

Miscellaneous

Notebook

iGEM Resources

Acknowledgements

The Team

iGEM Member List | Contributions

Achievements

Medal Requirements | BioSafety

BioBricks

Master List & Characterization Data

Human Practice

Workshop | Survey