Team:Tokyo-NoKoGen/metallothionein

From 2011.igem.org

(Difference between revisions)
 
(12 intermediate revisions not shown)
Line 1: Line 1:
-
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
 
<html>
<html>
<head>
<head>
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
-
<title>Metallothionein</title>
+
<title>Metallothionein v3</title>
-
<meta name="viewport" content="width = 960, minimum-scale = 0.25, maximum-scale = 1.60">
+
<meta name="viewport" content="width = 1085, minimum-scale = 0.25, maximum-scale = 1.60">
<meta name="GENERATOR" content="Freeway 5 Express 5.6.1">
<meta name="GENERATOR" content="Freeway 5 Express 5.6.1">
<style type="text/css">
<style type="text/css">
Line 31: Line 30:
.style2 { font-size:20px }
.style2 { font-size:20px }
.style10 { color:#000 }
.style10 { color:#000 }
 +
.style35 { color:#000; font-family:Arial,Helvetica,sans-serif; font-size:20px; margin-left:40px; margin-right:40px }
 +
.style38 { font-size:20px }
.style30 { font-family:Arial,Helvetica,sans-serif; font-weight:bold; font-size:18px; margin-left:0px; margin-right:0px; text-align:justify }
.style30 { font-family:Arial,Helvetica,sans-serif; font-weight:bold; font-size:18px; margin-left:0px; margin-right:0px; text-align:justify }
 +
.style54 { font-family:Arial,Helvetica,sans-serif; font-weight:bold; font-size:18px }
.style6 { font-family:Arial,Helvetica,sans-serif; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
.style6 { font-family:Arial,Helvetica,sans-serif; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
 +
.style53 { font-size:16px }
.style26 { font-family:Arial,Helvetica,sans-serif; font-weight:bold; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
.style26 { font-family:Arial,Helvetica,sans-serif; font-weight:bold; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
-
.style37 { font-family:Arial,Helvetica,sans-serif; font-size:14px; margin-left:0px; margin-right:0px; text-align:center }
+
.style56 { font-family:Arial,Helvetica,sans-serif; font-weight:bold; font-size:16px; margin-left:0px; margin-right:0px; text-align:justify }
 +
.style5 { color:#000; font-family:Arial,Helvetica,sans-serif; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
 +
.style59 { color:#000; font-family:Arial,Helvetica,sans-serif; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
 +
.style49 { color:#f00; font-family:Arial,Helvetica,sans-serif; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
 +
.style47 { color:#000; font-family:Arial,Helvetica,sans-serif; font-size:14px }
 +
.style20 { color:#000 }
 +
.style88 { color:#000; font-family:Arial,Helvetica,sans-serif; font-size:14px; margin-left:0px; margin-right:0px; text-align:justify }
 +
.style29 { color:#000 }
 +
.style31 { color:#000; font-style:italic }
 +
.style32 { color:#000 }
 +
.style57 { color:#000; font-size:16px }
 +
.style58 { font-family:Arial,Helvetica,sans-serif; font-size:14px }
-->
-->
</style>
</style>
Line 60: Line 74:
</tr>
</tr>
</table>
</table>
-
<table border=0 cellspacing=0 cellpadding=0 width=947>
+
<table border=0 cellspacing=0 cellpadding=0 width=1086>
<colgroup>
<colgroup>
<col width=6>
<col width=6>
<col width=239>
<col width=239>
<col width=13>
<col width=13>
-
<col width=688>
+
<col width=827>
<col width=1>
<col width=1>
</colgroup>
</colgroup>
Line 76: Line 90:
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/Project"><span class="style18" style="text-decoration:underline">Project: EcoLion</span></a></span></strong></p>
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/Project"><span class="style18" style="text-decoration:underline">Project: EcoLion</span></a></span></strong></p>
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/Parts"><span class="style18" style="text-decoration:underline">BioBricks</span></a></span></strong></p>
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/Parts"><span class="style18" style="text-decoration:underline">BioBricks</span></a></span></strong></p>
-
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/notebook"><span class="style18" style="text-decoration:underline">Notebook</span></a></span></strong></p>
+
<p class="style35"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/notebook"><span class="style18" style="text-decoration:underline"><strong>Notebook</strong></span></a></p>
-
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/protocols"><span class="style18" style="text-decoration:underline">Protocols</span></a></span></strong></p>
+
<p class="style3"><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/protocols"><span class="style18" style="text-decoration:underline"><strong>Protocols</strong></span></a></span></p>
-
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/attribution"><span class="style18" style="text-decoration:underline">Attribution</span></a></span></strong></p>
+
<p class="style3"><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/attribution"><span class="style18" style="text-decoration:underline"><strong>Attribution</strong></span></a></span></p>
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/safety"><span class="style18" style="text-decoration:underline">Safety</span></a></span></strong></p>
<p class="style3"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/safety"><span class="style18" style="text-decoration:underline">Safety</span></a></span></strong></p>
<p class="style3 f-lp"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/sponsors"><span class="style18" style="text-decoration:underline">Sponsors</span></a></span></strong></p>
<p class="style3 f-lp"><strong><span class="style14"><a href="https://2011.igem.org/Team:Tokyo-NoKoGen/sponsors"><span class="style18" style="text-decoration:underline">Sponsors</span></a></span></strong></p>
Line 87: Line 101:
<tr valign=top>
<tr valign=top>
<td height=354></td>
<td height=354></td>
-
<td height=3356 rowspan=2><p class="style30">Metallothionein - metal-binding peptide</p>
+
<td height=8027 rowspan=2>
-
<p class="style6"><strong>Background</strong></p>
+
<table border=0 cellspacing=0 cellpadding=0 width=827>
-
<p class="style6">Heavy metals such as Cd(II) and As(III) used in industry and urban are deposited into the land and ocean. They are taken into our body through drinking water, fish and crops, which are causing serious problem against human health. To get rid of them from contaminated soil and water is a serious issue we need to solve and think about.</p>
+
<colgroup>
-
<p class="style6">                         <img src="https://static.igem.org/mediawiki/2011/7/74/Metallothionein1.jpg" border=0 width=451 height=225 alt="metallothionein1" style="vertical-align:baseline"></p>
+
<col width=1>
-
<p class="style6">Today, proteins called metallothionein that can bind to metal ions are reported. By using such property of metallothionein, we have decided to make a metal ion cleaning device. Our metal cleaning system will work like this &#8211; we will make an E.coli that can produce metallothionein inside the cell. It will also synthesize transporters to take in metal ions from its surrounding, to make the metal cleaning faster and more effective. The absorbed metal ions will bind specifically to the metallothionein, which will then be collected inside the BMC (bacterial microcompartment). </p>
+
<col width=630>
-
<p class="style26">&nbsp;</p>
+
<col width=195>
-
<p class="style26">What are metallothioneines?</p>
+
<col width=1>
-
<p class="style6">We will focus on two metallothioneins, each paired up with transporters. Team Groningen in iGEM2009 has introduced fMT (an arsenic binding metallothionein) and Glpf (arsenic transporter). We will further use and characterize their parts in our metal cleaning E.coli to collect arsenite. A new metallothionein that we will introduce this year in iGEM, will be SmtA (Cadmium binding metallothionein) and MntH (Cadmium transporter).</p>
+
</colgroup>
-
<p class="style6">SmtA is found in Synechococcus sp. PCC7942 and has been reported that the cyanobacterial strain expressing SmtA reaches a higher OD550 in a cadmium containing medium. </p>
+
<tr valign=top>
-
<p class="style6">                     <img src="https://static.igem.org/mediawiki/2011/d/dd/Metallothionein2.jpg" border=0 width=553 height=220 alt="metallothionein2" style="vertical-align:baseline"></p>
+
<td height=5779 colspan=3><p class="style30">Metallothioneins (metal-binding <span class="style54">proteins</span>) and metal transporters</p>
-
<p class="style6">The E.coli K-12 derived MntH (yfep) are transporters that are highly homologous to the Nramp protein family (metal ion transporters), and are known to be able to transport a variety of metal ions including Cd2+ [2]. A study has shown that MntH facilitates transport of Mn2+ in a time-, temperature-, proton-dependent manner.</p>
+
<p class="style6"><strong><span class="style53">1. Background</span></strong></p>
-
<p class="style6">To make metallothionein be taken into the BMC, we will fuse SmtA and fMT with PduP1-18 - a protein that is recognized and is taken into pdu BMC (propanediol-utilizing BMC).</p>
+
<p class="style6">Heavy metals such as Cd(II) and As(III) used in industry and urban are deposited into the land and ocean. They are taken into our body through drinking water, fish and crops, which are causing serious problem against human health. To get rid of them from contaminated soil and water is a serious issue we need to solve and think about.</p>
-
<p class="style6">We will integrate SmtA, MntH, fMT and Glpf into our metal ion collecting E.coli to collect cadmium and arsenic ions. </p>
+
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/7/74/Metallothionein1.jpg" border=0 width=430 height=239 alt="metallothionein1" style="vertical-align:baseline">                         </p>
-
<p class="style37"><img src="https://static.igem.org/mediawiki/2011/6/60/Metallothionein3.jpg" border=0 width=484 height=268 alt="metallothionein3" style="vertical-align:baseline"></p>
+
<p class="style6">Today, proteins called metallothionein that can bind to metal ions are reported. By using such property of metallothionein, we have decided to make a metal ion cleaning device. Our metal cleaning system will work like this &#8211; we will make an E.coli that can produce metallothionein inside the cell. It will also synthesize transporters to take in metal ions from its surrounding, to make the metal cleaning faster and more effective. The absorbed metal ions will bind specifically to the metallothionein, which will then be collected inside the BMC (bacterial microcompartment). </p>
-
<p class="style26">&nbsp;</p>
+
<p class="style26">&nbsp;</p>
-
<p class="style26">Method</p>
+
<p class="style56">What are metallothioneines?</p>
-
<p class="style6">Our aim is to construct a vector with transporter under a constitutive promoter, and the metallothionein under a metal-sensitive promoter as shown on the diagram.</p>
+
<p class="style6">We will focus on two metallothioneins, each paired up with transporters. Team Groningen in iGEM2009 has introduced fMT (an arsenic binding metallothionein) and Glpf (arsenic transporter). We will further use and characterize their parts in our metal cleaning E.coli to collect arsenite. A new metallothionein that we will introduce this year in iGEM, will be SmtA (Cadmium binding metallothionein) and MntH (Cadmium transporter).</p>
-
<p class="style6">     <img src="https://static.igem.org/mediawiki/2011/1/10/Metallothionein4.jpg" border=0 width=491 height=221 alt="metallothionein4" style="vertical-align:baseline"></p>
+
<p class="style6">SmtA is found in Synechococcus sp. PCC7942 and has been reported that the cyanobacterial strain expressing SmtA reaches a higher OD550 in a cadmium containing medium. </p>
-
<p class="style6">1.) Design primers to clone SmtA and MntH by PCR</p>
+
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/d/dd/Metallothionein2.jpg" border=0 width=506 height=255 alt="metallothionein2" style="vertical-align:baseline"></p>
-
<p class="style6">     <img src="https://static.igem.org/mediawiki/2011/8/84/Metallothionein5.jpg" border=0 width=407 height=96 alt="metallothionein5" style="vertical-align:baseline"></p>
+
<p class="style6">The E.coli K-12 derived MntH (yfep) are transporters that are highly homologous to the Nramp protein family (metal ion transporters), and are known to be able to transport a variety of metal ions including Cd2+ [2]. A study has shown that MntH facilitates transport of Mn2+ in a time-, temperature-, proton-dependent manner.</p>
-
<p class="style6">&nbsp;</p>
+
<p class="style6">To make metallothionein be taken into the BMC, we will fuse SmtA and fMT with PduP1-18 - a protein that is recognized and is taken into pdu BMC (propanediol-utilizing BMC).</p>
-
<p class="style6"><strong>Cloning SmtA from Synechococcus sp. PCC7942</strong></p>
+
<p class="style6">We will integrate SmtA, MntH, fMT and Glpf into our metal ion collecting E.coli to collect cadmium and arsenic ions. </p>
-
<p class="style6">SmtA sequence shown in red</p>
+
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/6/60/Metallothionein3.jpg" border=0 width=620 height=356 alt="metallothionein3" style="vertical-align:baseline"></p>
-
<p class="style6">Restriction sites shown in pink</p>
+
<p class="style26">&nbsp;</p>
-
<p class="style6">     <img src="https://static.igem.org/mediawiki/2011/9/9c/Metallothionein6.jpg" border=0 width=492 height=222 alt="metallothionein6" style="vertical-align:baseline"></p>
+
<p class="style26">&nbsp;</p>
-
<p class="style6">Primers to clone and add restriction sites EcoRI, XbaI and SpeI. </p>
+
<p class="style56">2. Method</p>
-
<p class="style6">Fw primer:  AGAATTCGCGGCCGCATCTAGATGACCTCAACAACGTTGGTC</p>
+
<p class="style6">Our aim is to construct a vector with transporter under a constitutive promoter, and the metallothionein under a metal-sensitive promoter as shown on the diagram.</p>
-
<p class="style6">Rv primer: GCTACTAGTATTAGCCGTGGCAGTTACAG</p>
+
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/1/10/Metallothionein4.jpg" border=0 width=667 height=344 alt="metallothionein4" style="vertical-align:baseline"></p>
-
<p class="style6">&nbsp;</p>
+
<p class="style6"><strong><span class="style53">2-1. Cloning SmtA from Synechococcus sp. PCC7942</span></strong></p>
-
<p class="style26">Cloning MntH</p>
+
<p class="style6">SmtA sequence shown in red, Restriction sites shown in pink</p>
-
<p class="style6">MntH sequence shown in green</p>
+
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/a/a9/Metallothionein_seq1.jpg" border=0 width=406 height=98 alt="metallothioneinseq1a" style="vertical-align:baseline"> </p>
-
<p class="style6">Restriction sites shown in pink</p>
+
<p class="style6">Primers to clone and add restriction sites EcoRI, XbaI and SpeI. </p>
-
<p class="style6">     <img src="https://static.igem.org/mediawiki/2011/5/58/Metallothionein7.jpg" border=0 width=362 height=180 alt="metallothionein7" style="vertical-align:baseline"></p>
+
<p class="style6">Fw primer:  AGAATTCGCGGCCGCATCTAGATGACCTCAACAACGTTGGTC</p>
-
<p class="style6">Primers to clone and add restriction sites EcoRI, XbaI and SpeI.</p>
+
<p class="style6">Rv primer: GCTACTAGTATTAGCCGTGGCAGTTACAG</p>
-
<p class="style6">Fw primer:  AGAATTCGCGGCCGCATCTAGAGAATTTTTTTGC</p>
+
<p class="style6">&nbsp;</p>
-
<p class="style6">Rv primer: GCTACTAGTAGGAGCACAAT</p>
+
<p class="style56">2-2. Cloning MntH</p>
-
<p class="style6">The cloned products were cut at EcoRI and SpeI and ligated to PSB1C3 vector which was also cut at EcoRI and SpeI. </p>
+
<p class="style6">MntH sequence shown in green, Restriction sites shown in pink</p>
-
<p class="style6">2.) Construct PduP1-18 fused to SmtA and fMT</p>
+
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/2/22/Metallothionein_seq2.jpg" border=0 width=488 height=220 alt="metallothioneinseq2" style="vertical-align:baseline"></p>
-
<p class="style6">We originally had PduP1-18 fused with GFP, so we carried out inverse PCR to amplify the part without GFP. We then cut the product at EcoRI and SpeI to add them to the vector containing metallothionein which were cut at EcoRI and XbaI. </p>
+
<p class="style6"> <img src="https://static.igem.org/mediawiki/2011/8/84/Metallothionein5.jpg" border=0 width=465 height=355 alt="metallothionein5" style="vertical-align:baseline"></p>
-
<p class="style6">3.) Characterize the effect of expressing SmtA and MntH in E.coli cultured in Cd(II) and As(III) containing medium.</p>
+
<p class="style6">Primers to clone and add restriction sites EcoRI, XbaI and SpeI.</p>
-
<p class="style6">We will prepare a LB medium with different cadmium concentrations in a microtiter plate as shown in the diagram below, and see the change in OD660  and compare the differences between WT E.coli, E.coli expressing metallothionein, and E.coli expressing transporter. </p>
+
<p class="style6">Fw primer:  AGAATTCGCGGCCGCATCTAGAGAATTTTTTTGC</p>
-
<p class="style6">     <img src="https://static.igem.org/mediawiki/2011/c/c8/Metallothionein8.jpg" border=0 width=494 height=247 alt="metallothionein8" style="vertical-align:baseline"></p>
+
<p class="style6">Rv primer: GCTACTAGTAGGAGCACAAT</p>
-
<p class="style6">&nbsp;</p>
+
<p class="style6">The cloned products were cut at EcoRI and SpeI and ligated to PSB1C3 vector which was also cut at EcoRI and SpeI. </p>
-
<p class="style26">Result</p>
+
<p class="style6">&nbsp;</p>
-
<p class="style6">&nbsp;</p>
+
<p class="style6"><strong><span class="style53">2-3. C<span class="style18">onstruct PduP1-18 fused to SmtA and fMT</span></span></strong></p>
-
<p class="style26">Summary</p>
+
<p class="style5">We originally had PduP1-18 fused with GFP, so we carried out inverse PCR to amplify the part without GFP. We then cut the product at EcoRI and SpeI to add them to the vector containing metallothionein which were cut at EcoRI and XbaI. </p>
-
<p class="style26">&nbsp;</p>
+
<p class="style59">&nbsp;</p>
-
<p class="style26">Reference</p>
+
<p class="style49"><strong><span class="style18">2-4. Characterize the effect of expressing SmtA and GlpF in E.coli cultured in Cd(II) containing medium.</span></strong></p>
-
<p class="style6">[1] &#8220;Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothionein gene&#8221;, Koji sode et al., J Mar Biotechnol (1998)</p>
+
<p class="style49"><span class="style18">LB medium with different cadmium concentrations (0, 100, 120, 150, 180, 210, 240, 270, 300, 400 </span><span class="style47">µ</span><span class="style18">M) was prepared in a microtiter plate as shown in the diagram below, and observed the change in OD595 and compared the differences between WT E.coli, E.coli expressing PduP1~18-SmtA, and E.coli expressing PduP1~18-fMT. </span></p>
-
<p class="style6 f-lp">[2] &#8220;Identification of Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter&#8221; Hortence Makui et al., Molecular Microbiology (2000) </p>
+
<p class="style6"><span class="style18">We will prepare a LB medium with dif</span>ferent cadmium concentrations in a microtiter plate as shown in the diagram below, and see the change in OD660  and compare the differences between WT E.coli, E.coli expressing metallothionein, and E.coli expressing transporter. </p>
 +
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/9/9c/Metallothionein6.jpg" border=0 width=566 height=311 alt="metallothionein6" style="vertical-align:baseline"></p>
 +
<p class="style6">&nbsp;</p>
 +
<p class="style6">&nbsp;</p>
 +
<p class="style56">3. Result</p>
 +
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/5/58/Metallothionein7.jpg" border=0 width=613 height=792 alt="metallothioneinresults" style="vertical-align:baseline"></p>
 +
<p class="style6"><img src="https://static.igem.org/mediawiki/2011/c/c8/Metallothionein8.jpg" border=0 width=531 height=355 alt="metallothionein8a" style="vertical-align:baseline"></p>
 +
<p class="style49"><img src="https://static.igem.org/mediawiki/2011/a/a9/Metallothionein9.jpg" border=0 width=495 height=316 alt="metallothionein9" style="vertical-align:baseline"></p>
 +
<p class="style49"><span class="style18">As Cd(II)  concentration goes up, growth of </span><em><span class="style18">E. coli</span></em><span class="style18"> starts to slow down. At 270 µM , 300 µM and 400 µM Cd(II) concentration, there is no difference in the OD595 between </span><em><span class="style18">E. coli </span></em><span class="style20">WT and mutant expressing </span><span class="style18">PduP1~18-fMT</span><span class="style20"> or <span class="style18">PduP1~18-</span>SmtA (Fig.7)</span><em><span class="style18">.</span></em><span class="style18"> However, at 240 µM Cd(II) medium, </span><em><span class="style18">E. coli</span></em><span class="style18"> expressing PduP1~18-fMT showed a rise in its OD595 at around 6 hours. The difference becomes more significant as the Cd(II) concentration decreases, until it reaches a concentration of 120 µM where the growth between metallothionein expressing </span><em><span class="style18">E. coli</span></em><span class="style18"> and the wild type becomes very similar.  Unfortunately we could not see SmtA to function as a metallothionein, as it showed a similar growth curve to the wild type </span><em><span class="style18">E. coli</span></em><span class="style18">. However, looking at the graphs showing growth curves at Cd(II) concentrations 150 µM, 180 mM and 210 mM, cells expressing fMT shows a significant growth when compared to the growth of wild type. This result suggests that fMT bound to Cd(II) taken up by the cell, and allowed them to resist Cd(II) better than the cells without metallothionein.  Our PduP1~18 fused fMT showed to maintain its function inside the <em>E. coli</em></span>.</p>
 +
<p class="style88"><img src="https://static.igem.org/mediawiki/2011/e/e1/Metallothionein10.jpg" border=0 width=630 height=473 alt="metallothionein10" style="vertical-align:baseline"></p>
 +
</td>
 +
<td height=5779></td>
 +
</tr>
 +
<tr valign=top>
 +
<td height=473></td>
 +
<td height=473><img src="https://static.igem.org/mediawiki/2011/6/6c/Metallothionein11.jpg" border=0 width=630 height=473 alt="metallothionein11" style="float:left"></td>
 +
<td height=473></td>
 +
<td height=473></td>
 +
</tr>
 +
<tr valign=top>
 +
<td height=1774 colspan=3><p class="style88 f-fp"><span class="style29">The graphs in Fig.10 and Fig. 11 show growth of </span><span class="style31">E. coli </span><span class="style29">that makes SmtA in different concentrations of Cd(II). In the previous experiment, we could not observe the tolerance of <em>E. coli</em> expressing PduP1-18-SmtA in Cd(II) containing LB medium,  but when we expressed only the SmtA inside the <em>E. coli</em>, we could see that it could tolerate the Cd(II) without the PduP1-18. This could suggest that PduP1-18 fused to SmtA changed the conformation of SmtA protein, and prevented it from binding with Cd(II).  </span></p>
 +
<p class="style88">&nbsp;</p>
 +
<p class="style88"><img src="https://static.igem.org/mediawiki/2011/3/3f/Metallothionein12.jpg" border=0 width=630 height=473 alt="metallothionein12" style="vertical-align:baseline"></p>
 +
<p class="style88">&nbsp;</p>
 +
<p class="style88"><img src="https://static.igem.org/mediawiki/2011/2/25/Metallothionein13.jpg" border=0 width=630 height=473 alt="metallothionein13" style="vertical-align:baseline"></p>
 +
<p class="style49"><span class="style29">Due to the fact that not much difference could be observed in the OD595 at 300 </span><span class="style32">m</span><span class="style29">M Cd(II) containing medium, we tried changing the promoters for expressing SmtA and PduP1-18-fMT.</span></p>
 +
<p class="style49"><span class="style29">Previously , both SmtA and PduP1-18-fMT were expressed under a relatively low constitutive promoter (BBa_J23117). This time, we changed this promoter to a high constitutive promoter (BBa_J23100) and observed the growth in 300 µM Cd(II) medium, where growth of </span><span class="style31">E. coli </span><span class="style29">could not be observed before. However, </span><span class="style31">E. coli </span><span class="style29">with a high constitutive promoter could tolerate the Cd(II) containing medium better than the </span><span class="style31">E. coli </span><span class="style29">with low constitutive promoter (Fig.12, Fig.13). This suggests that the tolerance could be due to the amount of metallothionein being expressed, with a high constitutive promoter, </span><span class="style31">E. coli </span><span class="style29">could produce more metallothioneins and therefore could resist Cd(II) better. </span></p>
 +
<p class="style49">&nbsp;</p>
 +
<p class="style49">&nbsp;</p>
 +
<p class="style49"><span class="style57"><strong>4. Summary</strong></span></p>
 +
<p class="style59"><span class="style29">Absorb heavy metal ions from the environment, capture them inside the cell and store them inside the BMC, which will then be collected by collecting the </span><span class="style31">E. coli</span><span class="style29">, is our metal ion collecting system using </span><span class="style31">E. coli</span><span class="style29">. The key features in our system is the use of BMC for storage and metallothioneins for capturing. Metallothioneins, proteins that can bind to metal ions &#8211; we have decided to use SmtA and fMT which are known to bind to Cd(II). Having observed the difference in the growth curve of wild type </span><span class="style31">E. coli</span><span class="style29">, </span><span class="style31">E. coli</span><span class="style29"> expressing SmtA, and </span><span class="style31">E. coli</span><span class="style29"> expressing PduP1-18 fused fMT in different LB medium of different Cd(II) concentrations, we could see the difference that </span><span class="style31">E. coli</span><span class="style29"> expressing PduP1-18 fused fMT could resist higher Cd(II) concentration than the wild type. Concluding from this result, fMT could bind to Cd(II) inside the cell, because it helped </span><span class="style31">E. coli</span><span class="style29"> resist Cd(II). This result is supported by our experiment of changing the promoter from Pconst(Low) to Pconst(High),  where </span><span class="style31">E. coli </span><span class="style29">expressing metallothioein under Pconst(High) could resist Cd(II) concentration better.  From the result that E. coli expressing more metallothionein could survive Cd(II), it could be deduced that metallothionein is binds with the metal ion inside the cell preventing </span><span class="style31">E. coli </span><span class="style29">from cytotoxicity. </span></p>
 +
<p class="style59"><span class="style29">Matching our purpose of using metallothionein in </span><span class="style31">E. coli</span><span class="style29"> for metal collection, we have successfully observed that fMT could still maintain its function even when fused to the PuP1~18 tag protein. The PduP1~18 fused metallothionein that captures metal ions will then become encapsulated inside the BMC and be collected.</span></p>
 +
<p class="style59"><span class="style29">We have successfully managed to observe that expressing metallothionein inside the </span><span class="style31">E. coli</span><span class="style29"> can help them tolerate Cd(II) containing medium,  and that the protein are functioning by binding with Cd(II) inside the bacterial cell and preventing cytotoxicity. </span></p>
 +
<p class="style59">&nbsp;</p>
 +
<p class="style49">&nbsp;</p>
 +
<p class="style56">5. Reference</p>
 +
<p class="style6">[1] Sode et al. (1998) Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothionein gene<span class="style58">.</span> <em>J Mar Biotechnol</em></p>
 +
<p class="style6 f-lp">[2] Makui et al. (2000) Identification of Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter<span class="style58">.</span>  <em>Molecular Microbiology </em> </p>
 +
</td>
 +
<td height=1774></td>
 +
</tr>
 +
<tr class="f-sp">
 +
<td><img src="Resources/_clear.gif" border=0 width=1 height=1 alt="" style="float:left"></td>
 +
<td><img src="Resources/_clear.gif" border=0 width=630 height=1 alt="" style="float:left"></td>
 +
<td><img src="Resources/_clear.gif" border=0 width=195 height=1 alt="" style="float:left"></td>
 +
<td height=1><img src="Resources/_clear.gif" border=0 width=1 height=1 alt="" style="float:left"></td>
 +
</tr>
 +
</table>
</td>
</td>
<td height=354></td>
<td height=354></td>
</tr>
</tr>
<tr valign=top>
<tr valign=top>
-
<td height=3002 colspan=3></td>
+
<td height=7673 colspan=3></td>
-
<td height=3002></td>
+
<td height=7673></td>
</tr>
</tr>
<tr class="f-sp">
<tr class="f-sp">
Line 148: Line 209:
<td><img src="Resources/_clear.gif" border=0 width=239 height=1 alt="" style="float:left"></td>
<td><img src="Resources/_clear.gif" border=0 width=239 height=1 alt="" style="float:left"></td>
<td><img src="Resources/_clear.gif" border=0 width=13 height=1 alt="" style="float:left"></td>
<td><img src="Resources/_clear.gif" border=0 width=13 height=1 alt="" style="float:left"></td>
-
<td><img src="Resources/_clear.gif" border=0 width=688 height=1 alt="" style="float:left"></td>
+
<td><img src="Resources/_clear.gif" border=0 width=827 height=1 alt="" style="float:left"></td>
<td height=1><img src="Resources/_clear.gif" border=0 width=1 height=1 alt="" style="float:left"></td>
<td height=1><img src="Resources/_clear.gif" border=0 width=1 height=1 alt="" style="float:left"></td>
</tr>
</tr>

Latest revision as of 03:11, 29 October 2011

Metallothionein v3

Tokyo-NokoGen 2011

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology

 

Home

Team

Members

Project: EcoLion

BioBricks

Notebook

Protocols

Attribution

Safety

Sponsors

Metallothioneins (metal-binding proteins) and metal transporters

1. Background

Heavy metals such as Cd(II) and As(III) used in industry and urban are deposited into the land and ocean. They are taken into our body through drinking water, fish and crops, which are causing serious problem against human health. To get rid of them from contaminated soil and water is a serious issue we need to solve and think about.

metallothionein1

Today, proteins called metallothionein that can bind to metal ions are reported. By using such property of metallothionein, we have decided to make a metal ion cleaning device. Our metal cleaning system will work like this – we will make an E.coli that can produce metallothionein inside the cell. It will also synthesize transporters to take in metal ions from its surrounding, to make the metal cleaning faster and more effective. The absorbed metal ions will bind specifically to the metallothionein, which will then be collected inside the BMC (bacterial microcompartment).

 

What are metallothioneines?

We will focus on two metallothioneins, each paired up with transporters. Team Groningen in iGEM2009 has introduced fMT (an arsenic binding metallothionein) and Glpf (arsenic transporter). We will further use and characterize their parts in our metal cleaning E.coli to collect arsenite. A new metallothionein that we will introduce this year in iGEM, will be SmtA (Cadmium binding metallothionein) and MntH (Cadmium transporter).

SmtA is found in Synechococcus sp. PCC7942 and has been reported that the cyanobacterial strain expressing SmtA reaches a higher OD550 in a cadmium containing medium.

metallothionein2

The E.coli K-12 derived MntH (yfep) are transporters that are highly homologous to the Nramp protein family (metal ion transporters), and are known to be able to transport a variety of metal ions including Cd2+ [2]. A study has shown that MntH facilitates transport of Mn2+ in a time-, temperature-, proton-dependent manner.

To make metallothionein be taken into the BMC, we will fuse SmtA and fMT with PduP1-18 - a protein that is recognized and is taken into pdu BMC (propanediol-utilizing BMC).

We will integrate SmtA, MntH, fMT and Glpf into our metal ion collecting E.coli to collect cadmium and arsenic ions.

metallothionein3

 

 

2. Method

Our aim is to construct a vector with transporter under a constitutive promoter, and the metallothionein under a metal-sensitive promoter as shown on the diagram.

metallothionein4

2-1. Cloning SmtA from Synechococcus sp. PCC7942

SmtA sequence shown in red, Restriction sites shown in pink

metallothioneinseq1a

Primers to clone and add restriction sites EcoRI, XbaI and SpeI.

Fw primer: AGAATTCGCGGCCGCATCTAGATGACCTCAACAACGTTGGTC

Rv primer: GCTACTAGTATTAGCCGTGGCAGTTACAG

 

2-2. Cloning MntH

MntH sequence shown in green, Restriction sites shown in pink

metallothioneinseq2

metallothionein5

Primers to clone and add restriction sites EcoRI, XbaI and SpeI.

Fw primer: AGAATTCGCGGCCGCATCTAGAGAATTTTTTTGC

Rv primer: GCTACTAGTAGGAGCACAAT

The cloned products were cut at EcoRI and SpeI and ligated to PSB1C3 vector which was also cut at EcoRI and SpeI.

 

2-3. Construct PduP1-18 fused to SmtA and fMT

We originally had PduP1-18 fused with GFP, so we carried out inverse PCR to amplify the part without GFP. We then cut the product at EcoRI and SpeI to add them to the vector containing metallothionein which were cut at EcoRI and XbaI.

 

2-4. Characterize the effect of expressing SmtA and GlpF in E.coli cultured in Cd(II) containing medium.

LB medium with different cadmium concentrations (0, 100, 120, 150, 180, 210, 240, 270, 300, 400 µM) was prepared in a microtiter plate as shown in the diagram below, and observed the change in OD595 and compared the differences between WT E.coli, E.coli expressing PduP1~18-SmtA, and E.coli expressing PduP1~18-fMT.

We will prepare a LB medium with different cadmium concentrations in a microtiter plate as shown in the diagram below, and see the change in OD660 and compare the differences between WT E.coli, E.coli expressing metallothionein, and E.coli expressing transporter.

metallothionein6

 

 

3. Result

metallothioneinresults

metallothionein8a

metallothionein9

As Cd(II) concentration goes up, growth of E. coli starts to slow down. At 270 µM , 300 µM and 400 µM Cd(II) concentration, there is no difference in the OD595 between E. coli WT and mutant expressing PduP1~18-fMT or PduP1~18-SmtA (Fig.7). However, at 240 µM Cd(II) medium, E. coli expressing PduP1~18-fMT showed a rise in its OD595 at around 6 hours. The difference becomes more significant as the Cd(II) concentration decreases, until it reaches a concentration of 120 µM where the growth between metallothionein expressing E. coli and the wild type becomes very similar. Unfortunately we could not see SmtA to function as a metallothionein, as it showed a similar growth curve to the wild type E. coli. However, looking at the graphs showing growth curves at Cd(II) concentrations 150 µM, 180 mM and 210 mM, cells expressing fMT shows a significant growth when compared to the growth of wild type. This result suggests that fMT bound to Cd(II) taken up by the cell, and allowed them to resist Cd(II) better than the cells without metallothionein. Our PduP1~18 fused fMT showed to maintain its function inside the E. coli.

metallothionein10

metallothionein11

The graphs in Fig.10 and Fig. 11 show growth of E. coli that makes SmtA in different concentrations of Cd(II). In the previous experiment, we could not observe the tolerance of E. coli expressing PduP1-18-SmtA in Cd(II) containing LB medium, but when we expressed only the SmtA inside the E. coli, we could see that it could tolerate the Cd(II) without the PduP1-18. This could suggest that PduP1-18 fused to SmtA changed the conformation of SmtA protein, and prevented it from binding with Cd(II).

 

metallothionein12

 

metallothionein13

Due to the fact that not much difference could be observed in the OD595 at 300 mM Cd(II) containing medium, we tried changing the promoters for expressing SmtA and PduP1-18-fMT.

Previously , both SmtA and PduP1-18-fMT were expressed under a relatively low constitutive promoter (BBa_J23117). This time, we changed this promoter to a high constitutive promoter (BBa_J23100) and observed the growth in 300 µM Cd(II) medium, where growth of E. coli could not be observed before. However, E. coli with a high constitutive promoter could tolerate the Cd(II) containing medium better than the E. coli with low constitutive promoter (Fig.12, Fig.13). This suggests that the tolerance could be due to the amount of metallothionein being expressed, with a high constitutive promoter, E. coli could produce more metallothioneins and therefore could resist Cd(II) better.

 

 

4. Summary

Absorb heavy metal ions from the environment, capture them inside the cell and store them inside the BMC, which will then be collected by collecting the E. coli, is our metal ion collecting system using E. coli. The key features in our system is the use of BMC for storage and metallothioneins for capturing. Metallothioneins, proteins that can bind to metal ions – we have decided to use SmtA and fMT which are known to bind to Cd(II). Having observed the difference in the growth curve of wild type E. coli, E. coli expressing SmtA, and E. coli expressing PduP1-18 fused fMT in different LB medium of different Cd(II) concentrations, we could see the difference that E. coli expressing PduP1-18 fused fMT could resist higher Cd(II) concentration than the wild type. Concluding from this result, fMT could bind to Cd(II) inside the cell, because it helped E. coli resist Cd(II). This result is supported by our experiment of changing the promoter from Pconst(Low) to Pconst(High), where E. coli expressing metallothioein under Pconst(High) could resist Cd(II) concentration better. From the result that E. coli expressing more metallothionein could survive Cd(II), it could be deduced that metallothionein is binds with the metal ion inside the cell preventing E. coli from cytotoxicity.

Matching our purpose of using metallothionein in E. coli for metal collection, we have successfully observed that fMT could still maintain its function even when fused to the PuP1~18 tag protein. The PduP1~18 fused metallothionein that captures metal ions will then become encapsulated inside the BMC and be collected.

We have successfully managed to observe that expressing metallothionein inside the E. coli can help them tolerate Cd(II) containing medium, and that the protein are functioning by binding with Cd(II) inside the bacterial cell and preventing cytotoxicity.

 

 

5. Reference

[1] Sode et al. (1998) Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothionein gene. J Mar Biotechnol

[2] Makui et al. (2000) Identification of Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Molecular Microbiology