Team:HokkaidoU Japan/Project/GSK

From 2011.igem.org

(Difference between revisions)
m (GSK tag)
 
(13 intermediate revisions not shown)
Line 1: Line 1:
{{Team:HokkaidoU_Japan/header}}
{{Team:HokkaidoU_Japan/header}}
-
<html><style>
+
{{Team:HokkaidoU_Japan/Project/LeftContent}}
-
.protein {
+
<div id="hokkaidou-right-content">
-
border-collapse: collapse;
+
-
border:1px solid #aaa;
+
-
margin:10px 0px 10px 20px;
+
-
text-align:left;
+
-
}
+
-
.protein th {
+
==GSK tag==
-
background-color:#eee;
+
Glycogen Synthase Kinase 3β is known to be phosphorylated by several enzymes in eukaryotic cells. We used first 13 amino acid as a tag (GSK tag) of injected fusion protein<sup>[[#References|[1]]]</sup>. Ninth amino acid, serine, is phosphorylated in eukaryotic cells (Fig. 1). GSK tags phosphorylated state can be specifically detected by using phospho-specific antibodies. So it is effective method to distinguish GSK tag fusion protein existing in eukaryotic cells from uninjected protein remaining ''E. coli''.
-
font-weight:bold;
+
-
border-right:1px solid #aaa;
+
-
width:200px;
+
-
}
+
-
.protein td {
+
GSK tag was constructed by Julie Torruellas Garcia, Gregory V. Plano et al. We removed present Spe I site in the sequence by silent mutation.
-
border-right:1px solid #aaa;
+
-
padding:2px 8px;
+
-
width:100px;
+
-
}
+
-
.protein tr:nth-child(even) {
+
<pre>
-
border-bottom:1px solid #aaa;
+
Fig. 1
-
}
+
Translation: M  S  G  R  P  R  T  T  S-p  F  A  E  S
-
</style></html>
+
Original  :ATG AGT GGT CGC CCT CGC ACT ACT  AGT TTC GCT GAA AGT
 +
rm Spe I  :ATG AGT GGT CGC CCT CGC ACT ACA* AGT TTC GCT GAA AGT
 +
Phosphorylated Serine is shown as S-p.
 +
</pre>
-
==GSK tag==
 
-
GSK tag was constructed by Julie Torruellas Garcia et al. It is phosphorylated only in eucaryotic cells. So, we can figure out if protein was injected in eucaryotic cells by detecting phosphorylated GSK tag. GSK tag is derived from first 13aa of GSK-3β. Because of it's small size, the interference in tagged protein should be at minimum. We removed present Spe I site in the sequence by silent mutation.
 
-
It was reported that GSK tag can be added to N terminus, C terminus and anywhere in between of the protein. T3S signal should be on N terminus, we inserted GSK tag between T3S signal and Bsa I cloning site.
+
GSK tag can be added to N terminus<sup>[[#References|[1]]]</sup>, C terminus<sup>[[#References|[1]]]</sup>, and anywhere in middle<sup>[[#References|[2]]]</sup>, of the protein. We located the tag between SlrP secretion tag and the protein fused to it.
-
===Investigation of T3SS-injectable proteins===
+
Non-phosphospecific antibodies can used for determination of total amount of expressed fusion protein within the assay.
-
Here we will discuss the structure of proteins which are injected and which are not. We tried eight different proteins: mnt repressor, Gal4, RFP, GFP, Cre DNA recombinase, (CCR5) transmembrane, LacI and Luciferase. All were chosen from biobrick distribution which shows their significant importance for iGEM.  
+
-
Our main concern was not with the size the protein but its stability. Previous research show that proteins like Zinc-Finger are were stable and couldn't be injected. Stability prevents unfolding by T3SS chaperons. Our asortment includes Gal4 which is representative of stable proteins.
+
==Construction of GSK tagged T3SS-injectable proteins==
 +
Here we show a list of proteins which are to be tested for protein screening using GSK tag. We chose 8 different proteins (Table. 1). All are from iGEM 2011 biobrick distribution kit. As these parts are widely used in iGEM, characterising them would have a bigger impact compared to exotic ones.
 +
Our main concern is not with the size but the stability of proteins against unfolding by T3SS chaperone. Previous research indicate that proteins containing Zinc-Fingers are very stable and couldn't be injected. Proteins containing such stable structure is thought to resist unfolding by T3SS chaperon.
 +
 +
We cloned these proteins into the Bsa I cloning site mentioned [[Team:HokkaidoU_Japan/Project/Backbone|here]].
 +
 +
We have previously shown that GFP can be injected into eucaryotic cells by observation under confocal laser microscope. Thus we have a positive control.
{|class="protein" style="text-align:center;"
{|class="protein" style="text-align:center;"
|-
|-
-
!rowspan="2"|Name
+
!Name
|Registry
|Registry
|2011 distribution
|2011 distribution
Line 45: Line 38:
|total molecular weight (kDa)
|total molecular weight (kDa)
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!mnt repressor  
-
|-
+
-
!rowspan="2"|mnt repressor  
+
|[http://partsregistry.org/Part:BBa_C0072 BBa_C0072]
|[http://partsregistry.org/Part:BBa_C0072 BBa_C0072]
|1-12L
|1-12L
Line 53: Line 44:
|42.1
|42.1
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!Gal4 DNA binding domain
-
|-
+
-
!rowspan="2"|Gal4 DNA binding domain
+
|[http://partsregistry.org/Part:BBa_K105007 BBa_K105007]
|[http://partsregistry.org/Part:BBa_K105007 BBa_K105007]
|3-9I
|3-9I
Line 61: Line 50:
|47.6
|47.6
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!RFP
-
|-
+
-
!rowspan="2"|RFP
+
|[http://partsregistry.org/Part:BBa_J06504 BBa_J06504]
|[http://partsregistry.org/Part:BBa_J06504 BBa_J06504]
|1-13F
|1-13F
Line 69: Line 56:
|57.7
|57.7
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!GFP
-
|-
+
-
!rowspan="2"|GFP
+
|[http://partsregistry.org/Part:BBa_E0040 BBa_E0040]
|[http://partsregistry.org/Part:BBa_E0040 BBa_E0040]
|1-14K
|1-14K
Line 77: Line 62:
|57.9
|57.9
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!Cre DNA recombinase
-
|-
+
-
!rowspan="2"|Cre DNA recombinase
+
|[http://partsregistry.org/Part:BBa_J61047 BBa_J61047]
|[http://partsregistry.org/Part:BBa_J61047 BBa_J61047]
|1-5D
|1-5D
Line 85: Line 68:
|69.6
|69.6
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!CCR5
-
|-
+
-
!rowspan="2"|CCR5
+
|[http://partsregistry.org/Part:BBa_I712002 BBa_I712002]
|[http://partsregistry.org/Part:BBa_I712002 BBa_I712002]
|2-3D
|2-3D
Line 93: Line 74:
|70.4
|70.4
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!LacI
-
|-
+
-
!rowspan="2"|LacI
+
|[http://partsregistry.org/Part:BBa_I732100 BBa_I732100]
|[http://partsregistry.org/Part:BBa_I732100 BBa_I732100]
|2-10E
|2-10E
Line 101: Line 80:
|71.4
|71.4
|-
|-
-
|colspan="4" style="text-align:left;"|Discription
+
!Luciferase
-
|-
+
-
!rowspan="2"|Luciferase
+
|[http://partsregistry.org/Part:BBa_I712019 BBa_I712019]
|[http://partsregistry.org/Part:BBa_I712019 BBa_I712019]
|1-10H
|1-10H
|1653
|1653
|92.1
|92.1
-
|-
 
-
|colspan="4" style="text-align:left;"|Discription
 
|}
|}
 +
Table. 1 A list of several recommended proteins to be injected. Total molecular wight of each protein contains T3S signal and GSK tag domain.
 +
 +
However, of the time constraints we done only Pilot test which failed as a experiment for unknown causes so we don`t have a data to show.
 +
 +
To confirm the expression of the GSK tagged SlrP fusion proteins in E. coli  bacterial cell lysate must be analyzed by SDS-PAGE and immunoblotting with a GSK-3β(Cell Signaling Technologies #9332 ) and a phosphospecific GSK-3β(Cell Signaling Technologies #9336) antibody preparation.
=References=
=References=
Line 116: Line 96:
* JWensheng Luo and Michael S. Donnenberg. 2011. Interactions and Predicted Host Membrane Topology of the Enteropathogenic Escherichia coli Translocator Protein EspB. J. Bacteriol.Vol.193:2972–80. [http://www.ncbi.nlm.nih.gov/pubmed/21498649 PubMed]
* JWensheng Luo and Michael S. Donnenberg. 2011. Interactions and Predicted Host Membrane Topology of the Enteropathogenic Escherichia coli Translocator Protein EspB. J. Bacteriol.Vol.193:2972–80. [http://www.ncbi.nlm.nih.gov/pubmed/21498649 PubMed]
-
 
+
</div>
{{Team:HokkaidoU_Japan/footer}}
{{Team:HokkaidoU_Japan/footer}}

Latest revision as of 12:55, 15 December 2011

Contents

GSK tag

Glycogen Synthase Kinase 3β is known to be phosphorylated by several enzymes in eukaryotic cells. We used first 13 amino acid as a tag (GSK tag) of injected fusion protein[1]. Ninth amino acid, serine, is phosphorylated in eukaryotic cells (Fig. 1). GSK tags phosphorylated state can be specifically detected by using phospho-specific antibodies. So it is effective method to distinguish GSK tag fusion protein existing in eukaryotic cells from uninjected protein remaining E. coli.

GSK tag was constructed by Julie Torruellas Garcia, Gregory V. Plano et al. We removed present Spe I site in the sequence by silent mutation.

Fig. 1
 Translation: M   S   G   R   P   R   T   T   S-p  F   A   E   S
 Original   :ATG AGT GGT CGC CCT CGC ACT ACT  AGT TTC GCT GAA AGT
 rm Spe I   :ATG AGT GGT CGC CCT CGC ACT ACA* AGT TTC GCT GAA AGT 
Phosphorylated Serine is shown as S-p.


GSK tag can be added to N terminus[1], C terminus[1], and anywhere in middle[2], of the protein. We located the tag between SlrP secretion tag and the protein fused to it.

Non-phosphospecific antibodies can used for determination of total amount of expressed fusion protein within the assay.

Construction of GSK tagged T3SS-injectable proteins

Here we show a list of proteins which are to be tested for protein screening using GSK tag. We chose 8 different proteins (Table. 1). All are from iGEM 2011 biobrick distribution kit. As these parts are widely used in iGEM, characterising them would have a bigger impact compared to exotic ones.

Our main concern is not with the size but the stability of proteins against unfolding by T3SS chaperone. Previous research indicate that proteins containing Zinc-Fingers are very stable and couldn't be injected. Proteins containing such stable structure is thought to resist unfolding by T3SS chaperon.

We cloned these proteins into the Bsa I cloning site mentioned here.

We have previously shown that GFP can be injected into eucaryotic cells by observation under confocal laser microscope. Thus we have a positive control.

Name Registry 2011 distribution length (bp) total molecular weight (kDa)
mnt repressor [http://partsregistry.org/Part:BBa_C0072 BBa_C0072] 1-12L 288 42.1
Gal4 DNA binding domain [http://partsregistry.org/Part:BBa_K105007 BBa_K105007] 3-9I 438 47.6
RFP [http://partsregistry.org/Part:BBa_J06504 BBa_J06504] 1-13F 714 57.7
GFP [http://partsregistry.org/Part:BBa_E0040 BBa_E0040] 1-14K 720 57.9
Cre DNA recombinase [http://partsregistry.org/Part:BBa_J61047 BBa_J61047] 1-5D 1037 69.6
CCR5 [http://partsregistry.org/Part:BBa_I712002 BBa_I712002] 2-3D 1059 70.4
LacI [http://partsregistry.org/Part:BBa_I732100 BBa_I732100] 2-10E 1086 71.4
Luciferase [http://partsregistry.org/Part:BBa_I712019 BBa_I712019] 1-10H 1653 92.1

Table. 1 A list of several recommended proteins to be injected. Total molecular wight of each protein contains T3S signal and GSK tag domain.

However, of the time constraints we done only Pilot test which failed as a experiment for unknown causes so we don`t have a data to show.

To confirm the expression of the GSK tagged SlrP fusion proteins in E. coli bacterial cell lysate must be analyzed by SDS-PAGE and immunoblotting with a GSK-3β(Cell Signaling Technologies #9332 ) and a phosphospecific GSK-3β(Cell Signaling Technologies #9336) antibody preparation.

References

  • Julie Torruellas Garcia, Franco Ferracci, Michael W. Jackson,1 Sabrina S. Joseph, Isabelle Pattis, Lisa R. W. Plano, Wolfgang Fischer, and Gregory V. Plano. 2006. Measurement of Effector Protein Injection by Type III and Type IV Secretion Systems by Using a 13-Residue Phosphorylatable Glycogen Synthase Kinase Tag. Infect Immun.Vol.74:5645-57. [http://www.ncbi.nlm.nih.gov/pubmed/16988240 PubMed]
  • JWensheng Luo and Michael S. Donnenberg. 2011. Interactions and Predicted Host Membrane Topology of the Enteropathogenic Escherichia coli Translocator Protein EspB. J. Bacteriol.Vol.193:2972–80. [http://www.ncbi.nlm.nih.gov/pubmed/21498649 PubMed]
Retrieved from "http://2011.igem.org/Team:HokkaidoU_Japan/Project/GSK"