Team:UNAM-Genomics Mexico/Project
From 2011.igem.org
(15 intermediate revisions not shown) | |||
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
+ | =Project= | ||
- | + | Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium ''Rhizobium etli'', during its symbiotic relationship with the common bean ''Phaseolus vulgaris'', can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where ''Rhizobium etli'' reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in ''Rhizobium etli'' introducing a pathway assembled with elements from ''Clostridium acetobutylicum'', ''Desulfovibrio africanus'' and ''Chlamydomonas reinhardtii'', while maintaining nitrogen fixation. The two goals of our project are to make ''Rhizobium etli'' a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials. | |
+ | |||
---- | ---- | ||
- | + | <html> | |
- | + | ||
<div class="top-slider-main"> | <div class="top-slider-main"> | ||
<div class="slider-box1"> | <div class="slider-box1"> | ||
<div class="left"><br /><center></center></div> | <div class="left"><br /><center></center></div> | ||
- | + | <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Notebook/SA"><img src="https://static.igem.org/mediawiki/2011/8/8a/Unamgenomicsassembly.jpg"></a></div> | |
</div> | </div> | ||
<div class="slider-box2"> | <div class="slider-box2"> | ||
<div class="left"><br /><center></center></div> | <div class="left"><br /><center></center></div> | ||
- | + | <div class="content" valign="middle"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Project/HydrogenProduction"><img src="https://static.igem.org/mediawiki/2011/0/00/Unamgenomicsrsz_operons.jpg"></a></div> | |
</div> | </div> | ||
<div class="slider-box3"> | <div class="slider-box3"> | ||
<div class="left"><br /><center></center></div> | <div class="left"><br /><center></center></div> | ||
- | <div class="content"><img src="https://static.igem.org/mediawiki/2011/ | + | <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Project/RhizobialKit"><img src="https://static.igem.org/mediawiki/2011/e/ea/Unamgenomicsrsz_pberc5.jpg"></a></div> |
</div> | </div> | ||
<div class="slider-box4"> | <div class="slider-box4"> | ||
<div class="left"><br /><center></center></div> | <div class="left"><br /><center></center></div> | ||
- | <div class="content"><img src="https://static.igem.org/mediawiki/2011/ | + | <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Notebook/repC"><img src="https://static.igem.org/mediawiki/2011/8/82/UNAM_Genomics_MexicoDuplicadoparawiki.jpg"></a></div> |
</div> | </div> | ||
<div class="slider-box5"> | <div class="slider-box5"> | ||
<div class="left"><br /><center></center></div> | <div class="left"><br /><center></center></div> | ||
- | <div class="content"><img src="https://static.igem.org/mediawiki/2011/ | + | <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Team"><img src="https://static.igem.org/mediawiki/2011/3/3e/Unamgenomics6.jpg"></a></div> |
</div> | </div> | ||
<div class="slider-box6"> | <div class="slider-box6"> | ||
- | + | <div class="left"><br /><center></center></div> | |
- | <div class="content"><img src="https://static.igem.org/mediawiki/2011/ | + | <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Project"><img src="https://static.igem.org/mediawiki/2011/1/1f/Unamgenomicsproject1.jpg"></a></div> |
</div> | </div> | ||
</div> | </div> | ||
+ | </html> | ||
- | |||
- | |||
}} | }} |
Latest revision as of 03:04, 29 September 2011
Project
Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium Rhizobium etli, during its symbiotic relationship with the common bean Phaseolus vulgaris, can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where Rhizobium etli reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in Rhizobium etli introducing a pathway assembled with elements from Clostridium acetobutylicum, Desulfovibrio africanus and Chlamydomonas reinhardtii, while maintaining nitrogen fixation. The two goals of our project are to make Rhizobium etli a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials.