Team:UANL Mty-Mexico/Project/Overview

From 2011.igem.org

(Difference between revisions)
 
(14 intermediate revisions not shown)
Line 1: Line 1:
-
{{:Team:UANL_Mty-Mexico/Templates/Banner-template}}
+
{{:Team:UANL_Mty-Mexico/Templates/Banner-pizarron}}
{{:Team:UANL_Mty-Mexico/Templates/Menu-template}}
{{:Team:UANL_Mty-Mexico/Templates/Menu-template}}
<html>
<html>
Line 30: Line 30:
<META NAME="robots" CONTENT="FOLLOW,INDEX">
<META NAME="robots" CONTENT="FOLLOW,INDEX">
    
    
-
<link href="http://www.genobiotec2011.org/iGEMwiki/mainStyle.css" rel="stylesheet" type="text/css">
+
<link href="http://www.asebiogen.org/igemuanl/mainStyle.css" rel="stylesheet" type="text/css">
-
<script type="text/javascript" src="http://www.genobiotec2011.org/iGEMwiki/Scripts/jquery-1.3.2.min.js"></script>
+
<script type="text/javascript" src="http://www.asebiogen.org/igemuanl/Scripts/jquery-1.3.2.min.js"></script>
-
<script type="text/javascript" src="http://www.genobiotec2011.org/iGEMwiki/Scripts/jquery-1.3.2.min.js"></script>
+
<script type="text/javascript" src="http://www.asebiogen.org/igemuanl/Scripts/jquery-1.3.2.min.js"></script>
-
<script type='text/javascript' src='http://www.genobiotec2011.org/iGEMwiki/jquery.easing.1.3.js'></script>
+
<script type='text/javascript' src='http://www.asebiogen.org/igemuanl/jquery.easing.1.3.js'></script>
-
<script type='text/javascript' src='http://www.genobiotec2011.org/iGEMwiki/jquery.slideup.menu.1.0.min.js'></script>
+
<script type='text/javascript' src='http://www.asebiogen.org/igemuanl/jquery.slideup.menu.1.0.min.js'></script>
    
    
  
  
-
<script type="text/javascript" src="http://www.genobiotec2011.org/iGEMwiki/Scripts/jquery.scroll-follow.js"></script>  
+
<script type="text/javascript" src="http://www.asebiogen.org/igemuanl/Scripts/jquery.scroll-follow.js"></script>  
-
<script type="text/javascript" src="http://www.genobiotec2011.org/iGEMwiki/Scripts/slimbox2/js/slimbox2.js"></script>
+
<script type="text/javascript" src="http://www.asebiogen.org/igemuanl/Scripts/slimbox2/js/slimbox2.js"></script>
Line 123: Line 123:
     <p>Information processing through living things remains a challenge to science. Genetic logic-gates and switches have been used to this purpose<a href="#references" class="references-link">[1]</a>; however, most of these constructions use chemical inputs. Nonetheless, light induction systems have been constructed and characterized in the last few years<a href="#references" class="references-link">[2]</a>. Our project aims to enable a bacterial community, constituted by three <i>E. coli</i> strains that communicate through quorum sensing, to overall interpret a simple light based code. We attempt to insert the necessary genes for the light induction into <i>E. coli</i>'s chromosome, in order to create three different light responsive strains. Since light induction is becoming increasingly used in synthetic biology, we propose these modified <i>E. coli</i> strains as photochassis that could make useful tools in the field. </p><p> Furthermore, each strain will contain different plasmids carrying the genetic constructions needed for the interpretation of the code. This mechanism will mainly rely on genetic logic-gates and switches. The use of phage lambda's based biphasic switch<a href="#references" class="references-link">[3]</a>, which will theoretically allow the independent control of transcription from two different promoters through a single input, is introduced to iGEM.
     <p>Information processing through living things remains a challenge to science. Genetic logic-gates and switches have been used to this purpose<a href="#references" class="references-link">[1]</a>; however, most of these constructions use chemical inputs. Nonetheless, light induction systems have been constructed and characterized in the last few years<a href="#references" class="references-link">[2]</a>. Our project aims to enable a bacterial community, constituted by three <i>E. coli</i> strains that communicate through quorum sensing, to overall interpret a simple light based code. We attempt to insert the necessary genes for the light induction into <i>E. coli</i>'s chromosome, in order to create three different light responsive strains. Since light induction is becoming increasingly used in synthetic biology, we propose these modified <i>E. coli</i> strains as photochassis that could make useful tools in the field. </p><p> Furthermore, each strain will contain different plasmids carrying the genetic constructions needed for the interpretation of the code. This mechanism will mainly rely on genetic logic-gates and switches. The use of phage lambda's based biphasic switch<a href="#references" class="references-link">[3]</a>, which will theoretically allow the independent control of transcription from two different promoters through a single input, is introduced to iGEM.
</p>  
</p>  
 +
 +
<span class="subtitle">
 +
Acronyms</span>
 +
 +
<b>S.C.I.E.N.C.E.</b> stands for <b>S</b>imple <b>C</b>ode <b>I</b>interpretation <b>E</b>nabling <b>C</b>ircuit in <i><b>E</b></i>. <i>coli</i>. <b>HuBac</b> stands for <b>Hu</b>man-<b>Bac</b>teria language, as we decided to call our bacteria.
 +
 +
<div class="br"></div>
<div class="br"></div>
<div class="br"></div>
<div class="br"></div>
Line 168: Line 175:
       </div>
       </div>
<ol><li> Tamsir A, Tabor JJ, Voigt CA (2010) Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. <i>Nature</i> <b>469</b>:212-215.
<ol><li> Tamsir A, Tabor JJ, Voigt CA (2010) Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. <i>Nature</i> <b>469</b>:212-215.
-
<li> Tabor JJ, Levskaya A, Voigt CA (2010) Multichromatic Control of Gene Expression in <i>Escherichia coli</i>. <i>J. Mol. Biol.</i> <b>405</b>:315-324.
+
<li> Tabor JJ, Levskaya A, Voigt CA (2010) Multichromatic Control of Gene Expression in <i>Escherichia coli</i>. <i>J Mol Biol</i> <b>405</b>:315-324.
</li><li> Dodd BI, Perkins AJ, Tsemitsidis D, Egan BJ (2001) Octamerization of CI repressor is needed for effective repression of PRM and efficient switching from lysogeny.  <i>Gene Dev</i> <b>15</b>:3013–3022.
</li><li> Dodd BI, Perkins AJ, Tsemitsidis D, Egan BJ (2001) Octamerization of CI repressor is needed for effective repression of PRM and efficient switching from lysogeny.  <i>Gene Dev</i> <b>15</b>:3013–3022.
</li>
</li>
Line 193: Line 200:
          
          
          
          
-
     <a href="#top"><img src="http://www.genobiotec2011.org/iGEMwiki/images/OurSymbol.png" width="200" height="160" alt="OurSymbol"></a>
+
     <a href="#top" title="Go back to top"><img src="https://static.igem.org/mediawiki/igem.org/0/09/OurSymbol.png" width="200" height="160" alt="OurSymbol"></a>
      
      
  <div class="br"></div>
  <div class="br"></div>
Line 223: Line 230:
      
      
   </div>
   </div>
-
   <p><img src="http://www.genobiotec2011.org/iGEMwiki/images/SymbolFooter.png" width="950" height="70" alt="OurSymbol"></p>
+
   <p><img src="https://static.igem.org/mediawiki/igem.org/4/49/SymbolFooter.png" width="950" height="70" alt="OurSymbol"></p>
</div>
</div>
Line 229: Line 236:
</body>
</body>
</html>
</html>
 +
{{:Team:UANL_Mty-Mexico/Templates/Footer-template}}
{{:Team:UANL_Mty-Mexico/Templates/Footer-template}}

Latest revision as of 16:49, 13 February 2012

banner-main iGEM-logo
Team: UANL_Mty-Mexico Team: UANL_Mty-Mexico
Project: Overview
S.C.I.E.N.C.E. : Simple Code Interpretation Enabling Circuit in E. coli

Information processing through living things remains a challenge to science. Genetic logic-gates and switches have been used to this purpose[1]; however, most of these constructions use chemical inputs. Nonetheless, light induction systems have been constructed and characterized in the last few years[2]. Our project aims to enable a bacterial community, constituted by three E. coli strains that communicate through quorum sensing, to overall interpret a simple light based code. We attempt to insert the necessary genes for the light induction into E. coli's chromosome, in order to create three different light responsive strains. Since light induction is becoming increasingly used in synthetic biology, we propose these modified E. coli strains as photochassis that could make useful tools in the field.

Furthermore, each strain will contain different plasmids carrying the genetic constructions needed for the interpretation of the code. This mechanism will mainly rely on genetic logic-gates and switches. The use of phage lambda's based biphasic switch[3], which will theoretically allow the independent control of transcription from two different promoters through a single input, is introduced to iGEM.

Acronyms S.C.I.E.N.C.E. stands for Simple Code Iinterpretation Enabling Circuit in E. coli. HuBac stands for Human-Bacteria language, as we decided to call our bacteria.
iGEM-UANL Project video

This video deals with the following points:

- Construction of two genetic photocassettes, the induction systems for green and red lights.
- Chromosome insertion of the previous constructions and birth of two new E. coli strains, which we dubbed photochassis! (responsive to green and red lights, respectively).
- DNA synthesis of the interpretation genetic circuits by our dear sponsor GenScript (not that we did not try traditional assembly). Note there are three different constructions, which will make three smart bacteria.
- Finally the community processing the information, sent through the light-code (inside the light-machine!). Note how the cells within the community work together through quorum sensing.

References
  1. Tamsir A, Tabor JJ, Voigt CA (2010) Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Nature 469:212-215.
  2. Tabor JJ, Levskaya A, Voigt CA (2010) Multichromatic Control of Gene Expression in Escherichia coli. J Mol Biol 405:315-324.
  3. Dodd BI, Perkins AJ, Tsemitsidis D, Egan BJ (2001) Octamerization of CI repressor is needed for effective repression of PRM and efficient switching from lysogeny. Gene Dev 15:3013–3022.

OurSymbol

Team: UANL_Mty-Mexico