Team:UNAM-Genomics Mexico/Project

From 2011.igem.org

(Difference between revisions)
 
(20 intermediate revisions not shown)
Line 2: Line 2:
__NOTOC__
__NOTOC__
 +
=Project=
-
=Abstract=
+
Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium ''Rhizobium etli'', during its symbiotic relationship with the common bean ''Phaseolus vulgaris'', can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where ''Rhizobium etli'' reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in ''Rhizobium etli'' introducing a pathway assembled with elements from ''Clostridium acetobutylicum'', ''Desulfovibrio africanus'' and ''Chlamydomonas reinhardtii'', while maintaining nitrogen fixation. The two goals of our project are to make ''Rhizobium etli'' a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials.
 +
 
----
----
-
 
+
<html>
-
 
+
<div class="top-slider-main">
<div class="top-slider-main">
     <div class="slider-box1">
     <div class="slider-box1">
         <div class="left"><br /><center></center></div>
         <div class="left"><br /><center></center></div>
-
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/1/1f/Unamgenomicsproject1.jpg"></div>
+
      <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Notebook/SA"><img src="https://static.igem.org/mediawiki/2011/8/8a/Unamgenomicsassembly.jpg"></a></div>
     </div>
     </div>
     <div class="slider-box2">
     <div class="slider-box2">
         <div class="left"><br /><center></center></div>
         <div class="left"><br /><center></center></div>
-
        <div class="content"><img src="https://static.igem.org/mediawiki/2011/3/3e/Unamgenomics6.jpg"></div>
+
        <div class="content" valign="middle"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Project/HydrogenProduction"><img src="https://static.igem.org/mediawiki/2011/0/00/Unamgenomicsrsz_operons.jpg"></a></div>
     </div>
     </div>
     <div class="slider-box3">
     <div class="slider-box3">
         <div class="left"><br /><center></center></div>
         <div class="left"><br /><center></center></div>
-
         <div class="content"><img src="https://static.igem.org/mediawiki/2011/7/7a/Unamgenomicsteam1.jpg"></div>
+
         <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Project/RhizobialKit"><img src="https://static.igem.org/mediawiki/2011/e/ea/Unamgenomicsrsz_pberc5.jpg"></a></div>
     </div>
     </div>
     <div class="slider-box4">
     <div class="slider-box4">
         <div class="left"><br /><center></center></div>
         <div class="left"><br /><center></center></div>
-
         <div class="content"><img src="https://static.igem.org/mediawiki/2011/8/8e/Unamgenomicsteam4.jpg"></div>
+
         <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Notebook/repC"><img src="https://static.igem.org/mediawiki/2011/8/82/UNAM_Genomics_MexicoDuplicadoparawiki.jpg"></a></div>
     </div>
     </div>
     <div class="slider-box5">
     <div class="slider-box5">
         <div class="left"><br /><center></center></div>
         <div class="left"><br /><center></center></div>
-
         <div class="content"><img src="https://static.igem.org/mediawiki/2011/7/73/Unamgenomics5.jpg"></div>
+
         <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Team"><img src="https://static.igem.org/mediawiki/2011/3/3e/Unamgenomics6.jpg"></a></div>
     </div>
     </div>
     <div class="slider-box6">
     <div class="slider-box6">
-
      <div class="left"><br /><center></center></div>
+
<div class="left"><br /><center></center></div>
-
         <div class="content"><img src="https://static.igem.org/mediawiki/2011/6/60/Unamgenomicsteam3.jpg" class="sliderimage"></div>
+
         <div class="content"><a href="https://2011.igem.org/Team:UNAM-Genomics_Mexico/Project"><img src="https://static.igem.org/mediawiki/2011/1/1f/Unamgenomicsproject1.jpg"></a></div>
     </div>
     </div>
</div>
</div>
 +
</html>
-
 
-
Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium ''Rhizobium etli'', during its symbiotic relationship with the common bean ''Phaseolus vulgaris'', can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where ''Rhizobium etli'' reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in ''Rhizobium etli'' introducing a pathway assembled with elements from ''Clostridium acetobutylicum'', ''Desulfovibrio africanus'' and ''Chlamydomonas reinhardtii'', while maintaining nitrogen fixation. The two goals of our project are to make ''Rhizobium etli'' a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials.
 
}}
}}

Latest revision as of 03:04, 29 September 2011

UNAM-Genomics_Mexico


Project

Among the biological systems that produce hydrogen, the most efficient ones achieve it through reactions catalyzed by enzymes with iron-sulfur clusters which require hypoxic microenvironments to work. The bacterium Rhizobium etli, during its symbiotic relationship with the common bean Phaseolus vulgaris, can transform nitrogen gas into ammonia in a process called nitrogen fixation. In exchange the plant provides the bacteria with carbon sources and a protected niche inside its root, where Rhizobium etli reaches a hypoxic state. We will exploit this microenvironment to produce hydrogen in Rhizobium etli introducing a pathway assembled with elements from Clostridium acetobutylicum, Desulfovibrio africanus and Chlamydomonas reinhardtii, while maintaining nitrogen fixation. The two goals of our project are to make Rhizobium etli a powerful agent in environmental protection by nitrifying soils and producing hydrogen from solar energy, and to standardize the work in Rhizobials.