Team:Freiburg/Results

From 2011.igem.org

(Difference between revisions)
(Results)
(Experimental setup)
 
(4 intermediate revisions not shown)
Line 77: Line 77:
-
===Mathematical modeling===
+
===[https://2011.igem.org/Team:Freiburg/Modelling#A_mathematical_model_to_determine_the_experimental_design Mathematical modeling]===
To determine the Affinity k_D, experiments to find out the binding affinity of the plastic binding domain are necessary. To get a direct access to these values, we cloned the plastic binding domain in front of a GFP. Then, dilution and washing assays could be performed on polystyrene microtiter plates, red out by a fluorescence plate reader.  
To determine the Affinity k_D, experiments to find out the binding affinity of the plastic binding domain are necessary. To get a direct access to these values, we cloned the plastic binding domain in front of a GFP. Then, dilution and washing assays could be performed on polystyrene microtiter plates, red out by a fluorescence plate reader.  
Line 245: Line 245:
====Experimental setup====
====Experimental setup====
-
According to ''Adey et al.'' the plastic binding domain (pbd) binds to the polystyrene surface of micro titer plates (96 well plates). To investigate the binding properties of the plastic binding tag we started several spectroscopic assays using a plate reader (FLUOstar Omega) and polystyrene plates (Greiner bio one) To detect the fluorescence of the GFP tagged to the plastic binding domain we used black plates and a well scanning program measuring 10x10 spots in each well of the micro titer plate. We performed several washing steps to find out how much of the proteins can be found in the eluate and how much remains bound on the plate’s surface. To compare the pbd-tagged GFP to a normal GFP without special plastic binding ability we also measured GFP obtained via expression with our diverse PR (Promoter-Ribosome-binding-site constructs). To affirm the results obtained by fluorescence spectroscopy used the Bradford assay and screened for different protein concentrations in transparent polystyrene plates.
+
According to [https://2011.igem.org/Team:Freiburg/Description#Plastic_binding_domain Adey et al.] the plastic binding domain (pbd) binds to the polystyrene surface of micro titer plates (96 well plates). To investigate the binding properties of the plastic binding tag we started several spectroscopic assays using a plate reader (FLUOstar Omega) and polystyrene plates (Greiner bio one) To detect the fluorescence of the GFP tagged to the plastic binding domain we used black plates and a well scanning program measuring 10x10 spots in each well of the micro titer plate. We performed several washing steps to find out how much of the proteins can be found in the eluate and how much remains bound on the plate’s surface. To compare the pbd-tagged GFP to a normal GFP without special plastic binding ability we also measured GFP obtained via expression with our diverse PR (Promoter-Ribosome-binding-site constructs). To affirm the results obtained by fluorescence spectroscopy used the Bradford assay and screened for different protein concentrations in transparent polystyrene plates.
The calibration lines necessary for calculation of protein concentration can be found [[Media:Bradford+Fluorescence calibration.pdf|here]].
The calibration lines necessary for calculation of protein concentration can be found [[Media:Bradford+Fluorescence calibration.pdf|here]].
Line 262: Line 262:
<br/>
<br/>
In a range of 1-30ng/µL start concentration there remains about seven times more pbd-GFP after washing than "normal" GFP (see picture 3).
In a range of 1-30ng/µL start concentration there remains about seven times more pbd-GFP after washing than "normal" GFP (see picture 3).
 +
 +
<br/>
====Discussion====
====Discussion====
Line 344: Line 346:
==<span style="color:grey;">Precipitator</span>==
==<span style="color:grey;">Precipitator</span>==
[http://partsregistry.org/Part:BBa_K608404 BBa_K608404]
[http://partsregistry.org/Part:BBa_K608404 BBa_K608404]
-
IPTG-inducible Promoter with plastic binding domain-tagged GFP
+
IPTG-inducible Promoter with '''plastic binding domain'''-tagged GFP
[http://partsregistry.org/Part:BBa_K608406 BBa_K608406]
[http://partsregistry.org/Part:BBa_K608406 BBa_K608406]

Latest revision as of 03:54, 22 September 2011


This is the wiki page
of the Freiburger student
team competing for iGEM 2011.
Thank you for your interest!